Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PBDX is the XG blood group gene

Abstract

We have identified the Xga antigen, encoded by the XG blood group gene, by employing rabbit polyclonal and mouse monoclonal antibodies raised against a peptide derived from the N-terminal domain of a candidate gene, referred to earlier as PBDX. In indirect haemagglutination assays, these anti-peptide antibodies react with Xg(a+) but not Xg(a−) erythrocytes. In antibody-specific immobilization of antigen (ASIA) and immunoblot assays, the anti-peptide antibodies react with the same molecule as does human anti-Xga. Therefore, by its identity with PBDX, Xga is identified as a cell-surface protein that is 48% homologous to CD99 (previously designated the 12E7 antigen), the product of MIC2 which is tightly linked to XG. PBDX is renamed here XG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mann, J.D. et al. A sex-linked blood group. Lancet 1, 8–10 (1962).

    Article  CAS  Google Scholar 

  2. Race, R.R. & Sanger, R. in Blood groups in man 578–593 (Blackwell Scientific, Oxford, 1975).

    Google Scholar 

  3. Fialkow, P.J., Lisker, R., Giblett, E.R. & Zavala, C. Xg locus: failure to detect inactivation in females with chronic myelocytic leukaemia. Nature 226, 367–368 (1970).

    Article  CAS  Google Scholar 

  4. Lawler, S.D. & Sanger, R. Xg blood-groups and clonal-origin theory of chronic myeloid leukemia. Lancet i, 584–585 (1970).

    Article  Google Scholar 

  5. Fialkow, P.J. X-chromosome inactivation and the Xg locus. Am. J. hum. Genet. 22, 460–463 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Buckton, K.E., Jacobs, P.A., Rae, L.A., Newton, M.S. & Sanger, R. An inherited X-autosome translocation in man. Ann. hum. Genet. 35, 171–178 (1971).

    Article  CAS  Google Scholar 

  7. Ferguson-Smith, M.A., Sanger, R., Tippett, P., Aitken, D.A. & Boyd, E. A familial t(X;Y) translocation which assigns the Xg blood group locus to the region Xp22.3→pter. Cytogenet. cell Genet. 32, 273–274 (1982).

    Google Scholar 

  8. Yates, J.R.W. et al. Multipoint linkage analysis of steroid sulfatase (X-linked ichthyosis) and distal Xp markers. Genomics 1,52–59 (1987).

    Article  CAS  Google Scholar 

  9. Schlossman, S.F. et al. CD antigens 1993. J. Immunol. 152, 1–2 (1994).

    CAS  PubMed  Google Scholar 

  10. Goodfellow, P.N. & Tippett, P. A human quantitative polymorphism related to Xg blood groups. Nature 288, 404–405 (1981).

    Article  Google Scholar 

  11. Goodfellow, P.J., Pritchard, C., Tippett, P. & Goodfellow, P.N. Recombination between the X and Y chromosomes: implications for the relationship between MIC2, XG, and YG. Ann. hum. Genet. 51, 161–167 (1987).

    Article  CAS  Google Scholar 

  12. Tippett, P., Shaw, M.-A., Green, C.A. & Daniels, G.L. The 12E7 red cell quantitative polymorphism: control by the Y-borne locus, Yg. Ann. hum. Genet. 50, 339–347 (1986).

    Article  CAS  Google Scholar 

  13. Ellis, N.A. et al. Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nature Genet. 6, 394–400 (1994).

    Article  CAS  Google Scholar 

  14. Ellis, N.A. et al. The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. Nature 337, 81–84 (1989).

    Article  CAS  Google Scholar 

  15. Ellis, N. & Goodfellow, P.M. The mammalian pseudoautosomal region. Trends Genet. 5, 406–410 (1989).

    Article  CAS  Google Scholar 

  16. Habibi, B., Tippett, P., Lebesnerais, M. & Salmon, C. Protease inactivation of the red cell antigen Xga . Vox Sanguinis 36, 367–368 (1979).

    CAS  PubMed  Google Scholar 

  17. Petty, A. Monoclonal antibody-specific immoblisation of erythrocyteantigens (MAIEA). J. immunol. Meth. 161, 91–95 (1993).

    Article  CAS  Google Scholar 

  18. Herron, R. & Smith, G.A. Identification and immunochemical characterization of the human erythrocyte membrane glycoproteins that carry the Xga antigen. Biochem. J. 262, 369–371 (1989).

    Article  CAS  Google Scholar 

  19. Banting, G.S., Pym, B. & Goodfellow, P.N. Biochemical analysis of an antigen produced by both human sex chromosomes. EMBO J. 4, 1967–1972 (1985).

    Article  CAS  Google Scholar 

  20. Buckle, V., Mondello, C., Darling, S., Craig, I.W. & Goodfellow, P.N. Homologous expressed genes in the human sex chromosome pairing region. Nature 317, 739–741 (1985).

    Article  CAS  Google Scholar 

  21. Darling, S.M., Banting, G.S., Pym, B., Wolfe, J. & Goodfellow, P.N. Cloning an expressed gene shared by the human sex chromosomes. Proc. natn. Acad. Sci. U.S.A. 83, 135–139 (1986).

    Article  CAS  Google Scholar 

  22. Fellous, M., Bengtsson, B., Finnegan, D. & Bodmer, W.F. Expression of the Xg(a) antigen on cells in culture and its segregation in somatic cell hybrids. Ann. hum. Genet. 37, 421–430 (1974).

    Article  CAS  Google Scholar 

  23. Campana, T., Szabo, P., Piomelli, S. & Siniscalco, M., The Xga antigen on red cells and fibroblasts. Cytogenet Cell Genet. 22, 524–526 (1978).

    Article  CAS  Google Scholar 

  24. Hsu, S.H., Migeon, B.R. & Bias, W.B. Unreliability of the microcomplement fixation method for Xga typing of cultured fibroblasts. Birth Defects 12,382–386 (1976).

    CAS  PubMed  Google Scholar 

  25. Ellis, N. et al. Population structure of the human pseudoautsomal boundary. Nature 344, 663–665 (1990).

    Article  CAS  Google Scholar 

  26. Banting, G.S., Pym, B., Darling, S.M. & Goodfellow, P.N. The MIC2 gene product: Epitope mapping and structural prediction analysis define an integral membrane protein. Molec. Immunol. 26, 181–188 (1989).

    Article  CAS  Google Scholar 

  27. Smith, M.J., Goodfellow, P.J. & Goodfellow, P.N. The genomic organisation of the human pseudoautosomal gene MIC2 and the detection of a related locus. Hum. molec. Genet. 2, 417–422 (1993).

    Article  CAS  Google Scholar 

  28. Levy, R., Dilley, J., Fox, R.I. & Wamke, R. A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies. Proc. natn. Acad. Sci U.S.A. 76, 6552–6556 (1979).

    Article  CAS  Google Scholar 

  29. Gelin, C. et al. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J. 8, 3253–3259 (1989).

    Article  CAS  Google Scholar 

  30. Aubrit, F., Gelin, C., Pham, D., Raynal, B. & Bernard, A. The biochemical characterization of E2, a T cell surface molecule involved in rosettes. Eur. J. Immunol. 19, 1431–1436 (1989).

    Article  CAS  Google Scholar 

  31. Bodger, M.P. Isolation of hemopoietic progenitor cells from human umbilical cord blood. Expt. Hematol. 15, 869–876 (1987).

    CAS  Google Scholar 

  32. Dworzak, M.N. et al. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peipheral blood. Blood 83, 415–425 (1994).

    CAS  PubMed  Google Scholar 

  33. Ambros, I.M. et al. MIC2 is a specific marker for Ewing's sarcoma and periferal primitive neuroectodermal tumors. Cancer 67,1886–1893 (1991).

    Article  CAS  Google Scholar 

  34. Kovar, H. et al. Overexpression of the pseudoautosomal gene MIC2 in Ewing's sarcoma and peripheral primitive neuroectodermal tumor. Oncogene 5, 1067–1070 (1990).

    CAS  PubMed  Google Scholar 

  35. Harlow, E. & Lane, D., A Laboratory Manual.(Cold Spring Harbor Laboratory Press, New York 1988).

    Google Scholar 

  36. Green, N. et al. Immunogenic structure of the influenza virus hemagglutinin. Cell 28, 477–487 (1982).

    Article  CAS  Google Scholar 

  37. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  Google Scholar 

  38. Shulman, M., Wilde, C.D. & Kohler, G. A better cell line for making hybridomas secreting specific antibodies. Nature 276, 269–270 (1978).

    Article  CAS  Google Scholar 

  39. Goodfellow, P.N., Pritchard, C. & Banting, G.S. in Genome analysis: a practical approach (ed. Davies, K.E.) 1–18 (IRL Press, Oxford, 1988).

    Google Scholar 

  40. Mallinson, G. et al. Identification and partial characterization of the human erythrocyte membrane components) that express the antigens of the LW blood-group system. Biochem. J. 234, 649–652 (1986).

    Article  CAS  Google Scholar 

  41. Ausubel, F. et al. (ed.) Current protocols in molecular biology (Green Publishing Associates and Wiley-lnterscience, New York, 1993).

    Google Scholar 

  42. Clepet, C. et al The human SPY transcript. Hum. molec. Genet. 2, 2007–2012. (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, N., Tippett, P., Petty, A. et al. PBDX is the XG blood group gene. Nat Genet 8, 285–290 (1994). https://doi.org/10.1038/ng1194-285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1194-285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing