Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A complex mutable polymorphism located within the fragile X gene

Abstract

While studying founder chromosomes in the fragile X syndrome, we have unexpectedly found linkage equilibrium to FRAXAC2, an Alu–associated microsatellite within the defective gene, FMR–1. DNA sequencing of 265 chromosomes revealed 39 alleles and a complex microsatellite of form (GT)x–C–(TA)y–(T)z. A mutation rate of 3.3% was observed but only among fragile X maternally derived meioses. Finding a second mutable locus within FMR–1 suggests that the target for tandem repeat instability may not be confined to the (CGG)nrepeat alone and raises the possibility of an FMR–1 mutation mechanism involving microsatellites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, W.T. & Jenkins, E.C. The Fragile X Syndrome. In Molecular Genetic Medicine, Vol II. (ed. Friedmann, T.) 39–66 (Academic, San Diego, 1992).

    Chapter  Google Scholar 

  2. Fu, Y.H. et al. Variation of the CGG repeat at the fragile x site results in genetic instabilitiy: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Verkerk, A.J.M.H. et al. Identification of a Gene (FMR-1) Containing a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile X Syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Pieretti, M. et al. Absence of Expression of the FMR-1 Gene in Fragile X Syndrome. Cell 66, 1–20 (1991).

    Article  Google Scholar 

  5. Brown, W.T. et al. Rapid fragile X carrier screening and prenatal diagnosis using a PCR test. JAMA 270, 1569–1575 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Huntington's Collaborative Disease Network. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's Disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  9. Orr, H.T. et al. Expansion of an Unstable Trinucleotide CAG Repeat in Spinocerebellar Ataxia Type-1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Knight, S.J.L. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Harley, H.G. et al. Detection of linkage disequilibrium between the myotonic dystrophy locus and a new polymorphic DNA marker. Am. J. hum. Genet. 49, 68–75 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Richards, R.I. et al. Evidence of founder chromosomes in fragile X syndrome. Nature Genet. 1, 257–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Richards, R.I. et al. Fragile X syndrome: Genetic localisation by linkage mapping of two microsatellite repeats FRAXAC1 and FRAXAC2 which immediately flank the fragile site. J. med. Genet. 28, 818–823 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oudet, C. et al. Linkage disequilibrium between the fragile X mutation and two closely linked CA repeats suggests that fragile X chromosomes are derived from a small number of founder chromosomes. Am. J. hum. Genet. 52, 297–304 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Smits, A.P.T. et al. The fragile X syndrome: No evidence for any recent mutations. J. med. Genet. 30, 94–96 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imbert, G., Kretz, C., Johnson, K. & Mandel, J.-L. Origin of the expansion mutation in myotonic dystrophy. Nature Genet. 4, 72–76 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Levinson, G. & Gutman, G.A. Slipped-strand mispairing: A major mechanism of DNA sequence evolution. Molec. Biol. Evol. 4, 203–221 (1987).

    CAS  PubMed  Google Scholar 

  18. Schlotterer, C. & Tautz, D. Slippage synthesis of simple sequence DNA. Nucl. Acids Res. 20, 211–215 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jurka, J. & Smith, T. A fundamental division in the Alu family of repeated sequences. Proc. natn Acad. Sci. U.S.A. 85, 4775–4778 (1988).

    Article  CAS  Google Scholar 

  20. Zuliani, G. & Hobbs, H.H. A high frequency of length polymorphisms in repeated sequences adjacent to Alu sequences. Am. J. hum. Genet. 46, 963–969 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Economou, E.P., Bergen, A.W., Warren, A.C. & Antonarakis, S.E. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc. natn Acad. Sci. U.S.A. 87, 2951–2954 (1990).

    Article  CAS  Google Scholar 

  22. Beckmann, J.S. & Weber, J.L. Survey of Human and Rat Microsatellites. Genomics 12, 627–631 (1992).

    Article  CAS  Google Scholar 

  23. Petersen, M.B. et al. Use of short sequence repeat DNA polymorphisms after PCR amplification to detect the parental origin of the additional chromosome 21 in Down syndrome. Am. J. hum. Genet. 48, 65–71 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chu, C., Trapnell, B.C., Curristin, S., Cutting, G.R. & Crystal, R.G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nature Genet. 3, 151–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Shriver, M.D., Seist, G. & Boerwinkle, E. Length and sequence variation in the apolipoprotein B intron 20 Alu repeat. Genomics 14, 449–454 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Jeffreys, A.J., Royle, N.J., Wilson, V. & Wong, Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332, 278–281 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Vergnaud, G., Mariat, D., Apiou, F., Aurians, A., Lathrop, M. & Lauthier, V. The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11, 135–144 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Morral, N., Numes, V., Casals, T. & Estivill, X. CA/GT microsatellite alleles within the cystic fibrosis transmembrane conductance regulator (CFTR) gene are not generated by unequal crossing over. Genomics 10, 692–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Gibbs, M., Collick, A., Kelly, R.G. & Jeffreys, A.J. A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplantation development. Genomics 17, 121–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Aaltonen, L.A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 262, 812–816 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, N., Dobkin, C. & Brown, W. A complex mutable polymorphism located within the fragile X gene. Nat Genet 5, 248–253 (1993). https://doi.org/10.1038/ng1193-248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1193-248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing