Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Convergent evolution of gene circuits

Abstract

Convergent evolution is a potent indicator of optimal design. We show here that convergent evolution occurs in genetic networks. Specifically, we show that multiple types of transcriptional regulation circuitry in Escherichia coli and the yeast Saccharomyces cerevisiae have evolved independently and not by duplication of one or a few ancestral circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Circuit duplication is rare in yeast and E. coli.

References

  1. 1

    Futuyma, D.J. Evolutionary Biology 3rd edn. (Sinauer Associates, Sunderland, Massachusetts, 1998).

    Google Scholar 

  2. 2

    Stewart, C.-B., Schilling, J.W. & Wilson, A.C. Nature 330, 401–404 (1987).

    CAS  Article  Google Scholar 

  3. 3

    Kornegay, J.R., Schilling, J.W. & Wilson, A.C. Mol. Biol. Evol. 11, 921–928 (1994).

    CAS  PubMed  Google Scholar 

  4. 4

    Chen, L., DeVries, A.L. & Cheng, C.-H.C. Proc. Natl. Acad. Sci. USA 94, 3817–3822 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Lee, T.I. et al. Science 298, 799–804 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Milo, R. et al. Science 298, 824–827 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Nat. Genet. 31, 64–68 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Lynch, M. & Conery, J.S. Science 290, 1151–1155 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Wagner, A. Mol. Biol. Evol. 18, 1283–1292 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Dermitzakis, E.T. & Clark, A.G. Mol. Biol. Evol. 19, 1114–1121 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Wagner, A. Proc. Natl. Acad. Sci. USA 97, 6579–6584 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Stone, J.R. & Wray, G.A. Mol. Biol. Evol. 18, 1764–1770 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Ferea, T.L., Botstein, D., Brown, P.O. & Rosenzweig, R.F. Proc. Natl. Acad. Sci. USA 96, 9721–9726 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Gould, S.J. Wonderful Life: The Burgess Shale and the Nature of History (W.W. Norton, New York, 1989).

    Google Scholar 

Download references

Acknowledgements

G.C.C. is supported by the US Department of Energy's Computational Sciences Graduate Fellowship program, administered by the Krell Institute. A.W. would like to thank the US National Institutes of Health and the Santa Fe Institute for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Wagner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conant, G., Wagner, A. Convergent evolution of gene circuits. Nat Genet 34, 264–266 (2003). https://doi.org/10.1038/ng1181

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing