Tailoring the genome: the power of genetic approaches

Article metrics

Abstract

In the last century, genetics has developed into one of the most powerful tools for addressing basic questions concerning inheritance, development, individual and social operations and death. Here we summarize the current approaches to these questions in four of the most advanced models organisms: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly) and Mus musculus (mouse). The genomes of each of these four models have been sequenced, and all have well developed methods of efficient genetic manipulations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematics of typical recessive chemical mutagenesis screens in the model systems discussed: yeast, worm, fly, mouse and ES cell.

References

  1. 1

    Mendel, G. Versuche uber Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brunn 4, 3–47 (1866).

  2. 2

    Morgan, T. Sex-limited inheritance in Drosophila. Science 32, 120–122 (1910).

  3. 3

    Muller, H. Artificial transmutation of the gene. Science 66, 84–87 (1927).

  4. 4

    DeMarini, D.M. et al. Specific-locus mutations induced in eukaryotes (especially mammalian cells) by radiation and chemicals: a perspective. Mutat. Res. 220, 11–29 (1989).

  5. 5

    O'Kane, C.J. & Gehring, W.J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127 (1987).

  6. 6

    Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M. (eds) Mobile DNA II. (ASM, Washington DC, 2002).

  7. 7

    Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo–derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

  8. 8

    Doetschman, T., Maeda, N. & Smithies, O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 85, 8583–8587 (1988).

  9. 9

    Herron, B.J. et al. Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat. Genet. 30, 185–189 (2002).

  10. 10

    Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H. & Plasterk, R.H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

  11. 11

    Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 (1998).

  12. 12

    Adams, M.D. & Sekelsky, J.J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat. Rev. Genet. 3, 189–198 (2002).

  13. 13

    St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188 (2002).

  14. 14

    Townley, D.J., Avery, B.J., Rosen, B. & Skarnes, W.C. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res. 7, 293–298 (1997).

  15. 15

    Kuspa, A. & Loomis, W.F. Tagging developmental genes in Dictyostelium by restriction enzyme–mediated integration of plasmid DNA. Proc. Natl. Acad. Sci. USA 89, 8803–8807 (1992).

  16. 16

    Nusse, R. & Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

  17. 17

    Guthrie, C. & Fink, G.R. Guide to Yeast Genetics and Molecular Biology. (Academic, San Diego, 1991).

  18. 18

    Goffeau, A. et al. Life with 6000 genes. Science 274, 546, 563–547 (1996).

  19. 19

    Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

  20. 20

    Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

  21. 21

    Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

  22. 22

    Garfinkel, D.J., Mastrangelo, M.F., Sanders, N.J., Shafer, B.K. & Strathern, J.N. Transposon tagging using Ty elements in yeast. Genetics 120, 95–108 (1988).

  23. 23

    Smith, V., Chou, K.N., Lashkari, D., Botstein, D. & Brown, P.O. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274, 2069–2074 (1996).

  24. 24

    Seifert, H.S., Chen, E.Y., So, M. & Heffron, F. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83, 735–739 (1986).

  25. 25

    Bachman, N., Biery, M.C., Boeke, J.D. & Craig, N.L. Tn7-mediated mutagenesis of Saccharomyces cerevisiae genomic DNA in vitro. Methods Enzymol. 350, 230–247 (2002).

  26. 26

    Burns, N. et al. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087–1105 (1994).

  27. 27

    Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

  28. 28

    Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

  29. 29

    van Leeuwen, F. & Gottschling, D.E. Assays for gene silencing in yeast. Methods Enzymol. 350, 165–186 (2002).

  30. 30

    Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

  31. 31

    Coulson, A., Waterston, R., Kiff, J., Sulston, J. & Kohara, Y. Genome linking with yeast artificial chromosomes. Nature 335, 184–186 (1988).

  32. 32

    Mello, C. & Fire, A. DNA transformation. Methods Cell. Biol. 48, 451–482 (1995).

  33. 33

    Plasterk, R.H. Reverse genetics: from gene sequence to mutant worm. Methods Cell. Biol. 48, 59–80 (1995).

  34. 34

    Zwaal, R.R., Broeks, A., van Meurs, J., Groenen, J.T. & Plasterk, R.H. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. Natl. Acad. Sci. USA 90, 7431–7435 (1993).

  35. 35

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

  36. 36

    Montgomery, M.K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15502–15507 (1998).

  37. 37

    Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

  38. 38

    Zipperlen, P., Fraser, A.G., Kamath, R.S., Martinez-Campos, M. & Ahringer, J. Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J. 20, 3984–3992 (2001).

  39. 39

    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

  40. 40

    Stein, L., Sternberg, P., Durbin, R., Thierry-Mieg, J. & Spieth, J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 29, 82–86 (2001).

  41. 41

    Kim, S.K. et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087–2092 (2001).

  42. 42

    Davy, A. et al. A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001).

  43. 43

    Bessereau, J.L. et al. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413, 70–74 (2001).

  44. 44

    Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

  45. 45

    Siegfried, E., Wilder, E.L. & Perrimon, N. Components of wingless signalling in Drosophila. Nature 367, 76–80 (1994).

  46. 46

    Simon, M.A., Bowtell, D.D., Dodson, G.S., Laverty, T.R. & Rubin, G.M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

  47. 47

    Zhang, P. & Spradling, A.C. Efficient and dispersed local P element transposition from Drosophila females. Genetics 133, 361–373 (1993).

  48. 48

    Teeter, K. et al. Haplotype dimorphism in a SNP collection from Drosophila melanogaster. J. Exp. Zool. 288, 63–75 (2000).

  49. 49

    Hoskins, R.A. et al. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res. 11, 1100–1113 (2001).

  50. 50

    Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nat. Genet. 29, 475–481 (2001).

  51. 51

    Martin, S.G., Dobi, K.C. & St Johnston, D. A rapid method to map mutations in Drosophila. Genome Biol. 2, RESEARCH0036 (2001).

  52. 52

    Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

  53. 53

    Golic, K.G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

  54. 54

    Duffy, J.B., Harrison, D.A. & Perrimon, N. Identifying loci required for follicular patterning using directed mosaics. Development 125, 2263–2271 (1998).

  55. 55

    Rorth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418–12422 (1996).

  56. 56

    Xu, T., Wang, W., Zhang, S., Stewart, R.A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

  57. 57

    Perrimon, N., Lanjuin, A., Arnold, C. & Noll, E. Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element–induced mutations. Genetics 144, 1681–1692 (1996).

  58. 58

    Stowers, R.S. & Schwarz, T.L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

  59. 59

    Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

  60. 60

    Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055 (2001).

  61. 61

    Furlong, E.E., Profitt, D. & Scott, M.P. Automated sorting of live transgenic embryos. Nat. Biotechnol. 19, 153–156 (2001).

  62. 62

    Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

  63. 63

    Misra, S. et al. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 3, RESEARCH0083.0081–0083.0022 (2002).

  64. 64

    McDonald, M.J. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001).

  65. 65

    White, K.P., Rifkin, S.A., Hurban, P. & Hogness, D.S. Microarray analysis of Drosophila development during metamorphosis. Science 286, 2179–2184 (1999).

  66. 66

    Furlong, E.E., Andersen, E.C., Null, B., White, K.P. & Scott, M.P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

  67. 67

    Kennerdell, J.R. & Carthew, R.W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

  68. 68

    Lam, G. & Thummel, C.S. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10, 957–963 (2000).

  69. 69

    Kennerdell, J.R. & Carthew, R.W. Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18, 896–898 (2000).

  70. 70

    Fortier, E. & Belote, J.M. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240–244 (2000).

  71. 71

    Kalidas, S. & Smith, D.P. Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33, 177–184 (2002).

  72. 72

    Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503 (2000).

  73. 73

    Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

  74. 74

    Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell. 3, 711–722 (2002).

  75. 75

    Rong, Y.S. & Golic, K.G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

  76. 76

    Rong, Y.S. & Golic, K.G. A targeted gene knockout in Drosophila. Genetics 157, 1307–1312 (2001).

  77. 77

    Bellaiche, Y., Mogila, V. & Perrimon, N. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila. Genetics 152, 1037–1044 (1999).

  78. 78

    Roach, A., Takahashi, N., Pravtcheva, D., Ruddle, F. & Hood, L. Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42, 149–155 (1985).

  79. 79

    Yokoyama, T. et al. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res. 18, 7293–7298 (1990).

  80. 80

    Hebert, J.M., Rosenquist, T., Gotz, J. & Martin, G.R. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78, 1017–1025 (1994).

  81. 81

    Pennisi, D. et al. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat. Genet. 24, 434–437 (2000).

  82. 82

    Russell, W.L. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl. Acad. Sci. USA 76, 5818–5819 (1979).

  83. 83

    Justice, M.J., Noveroske, J.K., Weber, J.S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

  84. 84

    Brinster, R.L. et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231 (1981).

  85. 85

    Palmiter, R.D. et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615 (1982).

  86. 86

    Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

  87. 87

    Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

  88. 88

    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. Derivation of completely cell culture–derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

  89. 89

    Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA 98, 6209–6214 (2001).

  90. 90

    Gossler, A., Joyner, A.L., Rossant, J. & Skarnes, W.C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244, 463–465 (1990).

  91. 91

    Stanford, W.L., Cohn, J.B. & Cordes, S.P. Gene-trap mutagenesis: past, present and beyond. Nat. Rev. Genet. 2, 756–768 (2001).

  92. 92

    Chowdhury, K., Bonaldo, P., Torres, M., Stoykova, A. & Gruss, P. Evidence for the stochastic integration of gene trap vectors into the mouse germline. Nucleic Acids Res. 25, 1531–1536 (1997).

  93. 93

    Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

  94. 94

    Forrester, L.M. et al. An induction gene trap screen in embryonic stem cells: identification of genes that respond to retinoic acid in vitro. Proc. Natl. Acad. Sci. USA 93, 1677–1682 (1996).

  95. 95

    Medico, E., Gambarotta, G., Gentile, A., Comoglio, P.M. & Soriano, P. A gene trap vector system for identifying transcriptionally responsive genes. Nat. Biotechnol. 19, 579–582 (2001).

  96. 96

    Skarnes, W.C., Moss, J.E., Hurtley, S.M. & Beddington, R.S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl. Acad. Sci. USA 92, 6592–6596 (1995).

  97. 97

    Hicks, G.G. et al. Functional genomics in mice by tagged sequence mutagenesis. Nat. Genet. 16, 338–344 (1997).

  98. 98

    Lefebvre, V. et al. Characterization of primary cultures of chondrocytes from type II collagen/β-galactosidase transgenic mice. Matrix Biol. 14, 329–335 (1994).

  99. 99

    Liu, P., Jenkins, N.A. & Copeland, N.G. Efficient Cre-loxP–induced mitotic recombination in mouse embryonic stem cells. Nat. Genet 30, 66–72 (2002).

  100. 100

    Harrington, J.J. et al. Creation of genome-wide protein expression libraries using random activation of gene expression. Nat. Biotechnol. 19, 440–445 (2001).

  101. 101

    Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

  102. 102

    Dymecki, S.M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196 (1996).

  103. 103

    Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

  104. 104

    Belteki, G., Gertsenstein, M., Ow, D.W. & Nagy, A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing PhiC31 integrase. Nat. Biotechnol. (in press) (2003).

  105. 105

    Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755 (2001).

  106. 106

    Kwan, K.M. Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32, 49–62 (2002).

  107. 107

    Gossen, M., Bonin, A.L. & Bujard, H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci. 18, 471–475 (1993).

  108. 108

    Saam, J.R. & Gordon, J.I. Inducible gene knockouts in the small intestinal and colonic epithelium. J. Biol. Chem. 274, 38071–38082 (1999).

  109. 109

    Schwikowski, B., Uetz, P. & Fields, S. A network of protein–protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000).

  110. 110

    Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457. (2000).

  111. 111

    Stockwell, B.R., Haggarty, S.J. & Schreiber, S.L. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 6, 71–83. (1999).

  112. 112

    Chen, Y. et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat. Genet. 24, 314–317 (2000).

  113. 113

    Munroe, R.J. et al. Mouse mutants from chemically mutagenized embryonic stem cells. Nat. Genet. 24, 318–321 (2000).

  114. 114

    You, Y. et al. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat. Genet. 15, 285–288 (1997).

  115. 115

    Lefebvre, L., Dionne, N., Karaskova, J., Squire, J.A. & Nagy, A. Selection for transgene homozygosity in embryonic stem cells results in extensive loss of heterozygosity. Nat. Genet. 27, 257–258 (2001).

Download references

Author information

Correspondence to Andras Nagy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nagy, A., Perrimon, N., Sandmeyer, S. et al. Tailoring the genome: the power of genetic approaches. Nat Genet 33, 276–284 (2003) doi:10.1038/ng1115

Download citation

Further reading