Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA

Abstract

Holocarboxylase synthetase (HCS) plays an essential role in biotin utilization in eukaryotic cells and its deficiency causes biotin-responsive multiple carboxylase deficiency in humans. We have cloned the human HCS cDNA and show that antiserum against the recombinant protein immunoprecipitates human HCS. A one base deletion resulting in a premature termination and a missense mutation (Leu to Pro) were found in cells from siblings with HCS deficiency. Human HCS shows homology to BirA, which acts as both a biotin-[acetyl-CoA-carboxylase] ligase and a biotin represser in E. coli, suggesting a functional relationship between the two proteins. The human HCS gene maps to chromosome 21q22.1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Achuta Murthy, P.M. & Mistry, S.P. Synthesis of biotin-dependent carboxylases from their apoproteins and biotin. J. Scient. Ind. Res. 31, 554–563 (1972).

    Google Scholar 

  2. Wolf, B. & Heard, G.S. Disorders of biotin metabolism in The Metabolic Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2083–2103 (McGraw-Hill, New York, 1989).

    Google Scholar 

  3. Burri, B.J., Sweetman, L. & Nyhan, W. Mutant holocarboxylase synthetase: evidence for the enzyme defect in early infantile biotin-responsive multiple carboxylase deficiency. J. clin. Invest. 68, 1491–1495 (1981).

    Article  CAS  Google Scholar 

  4. Feldman, G.L. & Wolf, B. Deficient acetyl CoA carboxylase activity in multiple carboxylase deficiency. Clin. Chim. Acta 111, 147–151 (1981).

    Article  CAS  Google Scholar 

  5. Narisawa, K., Arai, N., Igarashi, Y., Satoh, T. & Tada, K. Clinical and biochemical findings on a child with multiple biotin-responsive carboxylase deficiencies. J. inher. metab. Dis. 5, 67–68 (1982).

    Article  CAS  Google Scholar 

  6. Packman, S. et al. Acetyl CoA carboxylase in cultured fibroblasts: differential biotin dependence in the two types of biotin-responsive multiple carboxylase deficiency. Am. J. hum. Genet. 36, 80–98 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghneim, H.K. & Bartlett, K. Mechanism of biotin-responsive combined carboxylase deficiency. Lancet 1, 1187–1188 (1982).

    Article  CAS  Google Scholar 

  8. Burri, B.J., Sweetman, L. & Nyhan, W.L. Heterogeneity of holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency. Am. J. hum. Genet. 37, 326–327 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartlett, K. et al. Enzyme studies in combined carboxylase deficiency. Ann. N.Y. Acad. Sci. 447, 235–251 (1985).

    Article  CAS  Google Scholar 

  10. Achuta Murthy, P.N. & Mistry, S.P. In vitro synthesis of propionyl-CoA holocarboxylase by a partially purified mitochondrial preparation from biotin-deficient chicken liver. Can. J. Biochem. 52, 800–803 (1974).

    Article  CAS  Google Scholar 

  11. Chang, H.I. & Cohen, N.D. Regulation and intracellular localization of the biotin holocarboxylase synthetase of 3T3-L1 cells. Arch. Biochem. Biophys. 226, 237–247 (1983).

    Article  Google Scholar 

  12. Cohen, N.D., Thomas, M. & Stack, M. The subcellular distribution of the holocarboxylase synthetase of rat liver. Ann. N.Y. Acad. Sci. 447, 393–394 (1985).

    Article  CAS  Google Scholar 

  13. Chiba, Y., Suzuki, Y., Aoki, Y., Ishida, Y. & Narisawa, K. Purification and properties of bovine liver holocarboxylase synthetase. Arch. Biochem. Biophys. (in the press).

  14. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 857–872 (1987).

    Article  Google Scholar 

  15. Lipman, D.J. & Pearson, W.R. Rapid and sensitive protein similarity searches. Science 227, 1435–1441 (1985).

    Article  CAS  Google Scholar 

  16. Barker, D.F. & Campbell, A.M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Eschehchia coli. J. molec. Biol. 146, 469–492 (1981).

    Article  CAS  Google Scholar 

  17. Barker, D.F. & Campbell, A.M. The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase. J. molec. Biol. 146, 451–467 (1981).

    Article  CAS  Google Scholar 

  18. Buoncristiani, M.R. & Otsuka, A.J. DMA-binding and enzymatic domains of the bifunctional biotin operon represser (BirA) of Escherichia coli. Gene 44, 255–261 (1986).

    Article  CAS  Google Scholar 

  19. Eisenberg, M.A., Prahash, O. & Hsiung, S.-C. Purification and properties of the biotin represser. J. biol. Chem. 257, 15167–15173 (1982).

    CAS  PubMed  Google Scholar 

  20. Howard, P.K., Shaw, J. & Otsuka, A.J. Nucleotide sequence of the birA gene encoding the biotin operon represser and biotin holoenzyme synthetase functions of Escherichia coli. Gene 35, 321–331 (1985).

    Article  CAS  Google Scholar 

  21. Wierenga, R.K. & Hoi, W.G. Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302, 842–844 (1983).

    Article  CAS  Google Scholar 

  22. Kamps, M.P., Taylor, S.S. & Sefton, B.M. Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature 310, 589–592 (1984).

    Article  CAS  Google Scholar 

  23. Mullins, M.C. & Rubin, G.M. Isolation of temperature-sensitive mutations of the tyrosine kinase receptor sevenless (sev) in Drosophila and their use in determining its time of action. Proc. natn. Acad. Sci. U.S.A. 88, 9387–9391 (1991).

    Article  CAS  Google Scholar 

  24. Komatsu, H. & Ikebe, M. Affinity labelling of smooth-muscle myosin light-chain kinase with 5′-[p-(fluorosulphonyl)benzoyl]adenosine. Biochem. J. 296, 53–58 (1993).

    Article  CAS  Google Scholar 

  25. Fujimoto Sakata, S., Shelly, L.L., Ruppert, S., Schutz, G. & Chou, J.Y. Cloning and expression of murine S-adenosylmethionine synthetase. J. biol. Chem. 268, 13978–13986 (1993).

    Google Scholar 

  26. Gope, M.L. et al. Molecular cloning of the chicken avidin cDNA. Nucl. Acids Res. 15, 3595–3606 (1987).

    Article  CAS  Google Scholar 

  27. Haiti, F.-U., Pfanner, N., Nicholson, D.W. & Neupert, W. Mitochondrial protein import. Biochem. Biophys. Acta. 988, 1–45 (1989).

    Google Scholar 

  28. Surgechov, A.P. Common genes for mitochondrial and cytoplasmic proteins. Trends Biochem. Sci. 12, 335–338 (1987).

    Article  Google Scholar 

  29. Suzuki, T., Yoshida, T. & Tuboi, S. Evidence that liver mitochondrial and cytosolic f umarases are synthesized from one species of mRNA by alternative translational initiation at two in-phase AUG codons. Eur. J. Biochem. 207, 767–772 (1992).

    Article  CAS  Google Scholar 

  30. Wilson, K.P., Shewchuk, L.M., Brennan, R.G., Otsuka, A.J. & Matthews, B.W. Escherichia coli biotin holoenzyme synthetase/bio represser crystal structure delineates the biotin- and DMA-binding domains. Proc. natn. Acad. Sci. U.S.A. 89, 9257–9261 (1992).

    Article  CAS  Google Scholar 

  31. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–169 (1987).

    Article  CAS  Google Scholar 

  32. Iwamatsu, A. S-Carboxymethylation of proteins transferred onto polyvinylidene difluoride membranes followed by in situ protease digestion and amino acid microsequencing. Electrophoresis 13, 142–147 (1992).

    Article  CAS  Google Scholar 

  33. Holton, T.A. & Graham, M.W. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucl. Acids Res. 19, 1156 (1991).

    Article  CAS  Google Scholar 

  34. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  35. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  36. Hariow, E. & Lane, D. Antibodies: a laboratory manual (Cold Spring Harbor Laboratory, New York, 1988).

    Google Scholar 

  37. Saunders, M.E., Sherwood, W.G., Duthie, M., Surh, L. & Gravel, R.A. Evidence for a defect of holocarboxylase synthetase activity in cultured lymphoblasts from a patient with biotin-responsive multiple carboxylase deficiency. Am. J. hum. Genet. 34, 590–601 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshiura, K. et al. Mapping of the bone morphogenetic protein 1 gene (BMP1) to 8p21: removal of BMP1 from candidacy for the bone disorder in Langer-Giedion syndrome. Cytogenet. Cell Genet. 64, 208–809 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Aoki, Y., Ishida, Y. et al. Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA. Nat Genet 8, 122–128 (1994). https://doi.org/10.1038/ng1094-122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1094-122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing