Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Screening patients for heterozygous p53 mutations using a functional assay in yeast

Abstract

Inherited mutations of the p53 gene significantly increase the risk of developing diverse malignancies, and germline p53 mutations can be detected by assaying the transcriptional activity of the p53 protein in mammalian cells. Here we describe a method starting with lymphocytes that allows detection of germline p53 mutations by ‘functional’ analysis of p53 protein expressed in Saccharomyces cerevisiae. The p53 PCR products are directly cloned into yeast expression vectors in vivo and subsequently tested for transcriptional activity in a simple growth assay. This technique, functional analysis of separated alleles in yeast (FASAY), requires only a few steps, can be automated readily and should permit screening for germline or somatic heterozygous mutations in any gene whose function can be monitored in yeast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friend, S.H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Call, K.M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60, 509–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Gessler, M. et al. Homozygous deletion in Wilms' tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Viskochii, D. et al. Deletions and a translation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187–192 (1990).

    Article  Google Scholar 

  5. Cawthon, R.M. et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62, 193–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Wallace, M.R. et al. Type 1 neurofibromatosis gene: identification of a larger transcript disrupted in three NF1 patients. Science 249, 181–186 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Kinzler, K.W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Joslyn, G. et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 66, 601–613 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Trofatter, J.A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hall, J.M. et al. Linkage of early onset familial breast cancer to chromosome 17q21. Science 250, 1684–1689 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Narod, S.A. et al. Familial breast-ovarian cancer locus on chromosome 17q12–q23. Lancet 338, 82–83 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Larsson, C., Skogseid, B., Oberg, K., Nakamura, Y. & Nordenskjord, M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332, 85–87 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. King, C.R., Schimke, R.N., Arthur, T., Davoren, B. & Collins, D. Proximal 3p deletion in renal cell carcinoma cells from a patients with von Hippel-Lindau disease. Cancer Genet Cytogenet. 27, 345–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Cannon-Albright, L.A. et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13–p22. Science 258, 1148–1152 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Fountain, J.W. et al. Homozygous deletions within human chromosome band 9p21 in melanoma. Proc. natn. Acad. Sci. U.S.A. 89, 10557–10561 (1992).

    Article  CAS  Google Scholar 

  18. Frebourg, T. et al. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactive the p53 protein. Proc. natn. Acad. Sci. U.S.A. 89, 6413–6417 (1992).

    Article  CAS  Google Scholar 

  19. Prives, C. & Manfrefi, J.J. The p53 tumor suppressor protein: meeting review. Genes Dev. 7, 529–534 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcoma, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Malkin, D. et al. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. New Engl. J. Med. 326, 1309–1315 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Metzger, A.K. et al. Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymoma. Proc. natn. Acad. Sci. U.S.A. 88, 7825–7829 (1991).

    Article  CAS  Google Scholar 

  23. Toguchida, J. et al. Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. New Engl. J. Med. 326, 1301–1308 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Li, F.P. et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 48, 5358–5362 (1988).

    CAS  PubMed  Google Scholar 

  25. Kern, S.E. et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708–1711 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Kern, S.E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Farmer, G. et al. Wild-type p53 activates transcription in vitro. Nature 358, 83–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Schärer, E. & Iggo, R. Mammalian p53 can function as a transcription factor in yeast. Nucl. Acids Res. 20, 1539–1545 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vogelstein, B. & Kinzler, K.W. W. p53 function and dysfunction. Cell 70, 523–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Frebourg, T. et al. A functional screen for germ line p53 mutations based on transcriptional activation. Cancer Res. 52, 6976–6978 (1992).

    CAS  PubMed  Google Scholar 

  31. Orr-Weaver, T.L., Szostack, J.W. & Rothstein, R.J. Genetic application of yeast transformation with linear and gapped plasmids. Meth. Enzymol. 101, 202–210 (1983).

    Article  Google Scholar 

  32. Nigro, J.M., Sikorski, R., Reed, S.I. & Vogelstein, B. Human p53 and CDC2Hs genes combine to inhibit the proliferation of Saccharomyces cerevisiae. Molec. cell. Biol. 12, 1357–1365 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frebourg, T. & Friend, S.H. Cancer risks from germ line p53 mutations. J. clin. Invest 90, 1637–1641 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Helin, K., Lees, J.A., Vidal, M., Dyson, N., Harlow, E. & Fattaey, A. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 337–350 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Guthrie, C. & Fink, G.R. Guide to Yeast Genetics and Molecular Biology. Methods in Enzymology Vol. 194 (Academic Press, San Diego, 1991).

    Google Scholar 

  38. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ammerer, G. Expression of genes in yeast using the ADH1 promoter. Meth. Enzymol. 101, p192 (1983).

    Article  Google Scholar 

  40. Thierry, A., Fairhead, C. & Dujon, B. The complete sequence of the 8.2kb segment left of MAT on chromosome III reveals five ORFs, including a gene for a yeast ribokinase. Yeast 6, 521–534 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Wilson, T., Fahner, T., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI–B by genetic selection in yeast. Science 252, 1296–1300 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Flick, J.S. & Johnston, M. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Molec. cell. Biol. 10, 4757–4769 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishioka, C., Frebourg, T., Yan, YX. et al. Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 5, 124–129 (1993). https://doi.org/10.1038/ng1093-124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1093-124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing