A brief history of gene therapy

Abstract

The concepts of gene therapy arose initially during the 1960s and early 1970s whilst the development of genetically marked cells lines and the clarification of mechanisms of cell transformation by the papovaviruses polyoma and SV40 was in progress. With the arrival of recombinant DNA techniques, cloned genes became available and were used to demonstrate that foreign genes could indeed correct genetic defects and disease phenotypes in mammalian cells in vitro. Efficient retroviral vectors and other gene transfer methods have permitted convincing demonstrations of efficient phenotype correction in vitro and in vivo, now making gene therapy a broadly accepted approach to therapy and justifying clinically applied studies with human patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Anderson, W.F. Prospects for human gene therapy. Science 226, 401–409 (1984).

    CAS  Google Scholar 

  2. 2

    Nichols, E.K. Gene therapy. (ed. Boyer, H.) (Harvard University Press, Cambridge, 1988).

    Google Scholar 

  3. 3

    Friedmann, T. Progress toward human gene therapy. Science 244, 1275–1281 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Verma, I.M. Gene therapy. Sci. Am. 263, 68–72 (1990).

    CAS  PubMed  Google Scholar 

  5. 5

    Anderson, W.F. Human gene therapy. Science 256, 808–813 (1992).

    CAS  PubMed  Google Scholar 

  6. 6

    Miller, A.D. Human gene therapy comes of age. Nature 357, 455–460 (1992).

    CAS  PubMed  Google Scholar 

  7. 7

    Avery, O.T., McLeod, C.M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. exp. Med. 79, 137–158 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Szybalska, E.H. & Szybalski, W. Genetics of human cell lines, IV. DNA-mediated heritable transformation of a biochemical trait. Proc. natn. Acad. Sci. U.S.A 48, 2026–2034 (1962).

    CAS  Google Scholar 

  9. 9

    Seegmiller, J.E., Rosenbloom, F.M. & Kelly, W.N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155, 1682–1684 (1967).

    CAS  PubMed  Google Scholar 

  10. 10

    Kao, F.T. & Puck, T.T. Genetics of somatic mammalian cells: Induction and isolation of nutritional mutants in Chinese hamster cells. Proc. natn. Acad. Sci. U.S.A. 60, 1275–1281 (1968).

    CAS  Google Scholar 

  11. 11

    Borenfreund, E. & Bendich, A. A study of the penetration of mammalian cells by deoxyribonucleic acids. J. Biophys. Biochem. Cyt. 9, 81–91 (1961).

    CAS  Google Scholar 

  12. 12

    Kay, E.R.M. Incorporation of deoxyribonucleic acid by mammalian cells in vitro. Nature 191, 387–388 (1961).

    CAS  PubMed  Google Scholar 

  13. 13

    Rabotti, G.F. Incorporation of DNA into a mouse tumor in vivo and in vitro. Exp. cell. Res. 31, 562–565 (1963).

    CAS  PubMed  Google Scholar 

  14. 14

    Bradley, T.R., Roosa, R.A. & Law, L. DNA transformation studies with mammalian cells in culture. J. Cell. Comp. Physiol. 60, 127–138 (1962).

    CAS  PubMed  Google Scholar 

  15. 15

    Majumdar, A. & Bose, S.K. DNA mediated genetic transformation of a human cancerous cell line cultured in vitro. Ind. J. med. Res. 603–612 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Bendich, A., Borenfreund, E. & Honda, Y. In DNA-induced heritable alteration of mammalian cells. 80–87 (North-Holland Publishing Company, 1971).

    Google Scholar 

  17. 17

    Hill, M. & Huppert, J. Fate of exogenous mouse DNA in chicken fibfoblasts in vitro: non-conservative preservation. Biochim. Biophys. Acta 213, 26–35 (1970).

    CAS  PubMed  Google Scholar 

  18. 18

    Sambrook, J., Westphal, H., Srivansan, P.R. & Dulbecco, R. The integrated state of viral DNA in SV40-transformed cells. Proc. natn. Acad. Sci. U.S.A. 59, 1288–1293 (1968).

    Google Scholar 

  19. 19

    Hill, M. & Hillova, J. Virus recovery in chicken cells treated with Rous sarcoma cell DNA. Nature NBiol 237, 35–39 (1972).

    CAS  Google Scholar 

  20. 20

    Topp, W.C., Lane, D. & Pollack, R. Transformation by SV40 and polyoma virus in DNA Tumor Viruses (ed. Tooze, J. ) 205–296 (Cold Spring Harbor Press, Cold Spring Harbor, 1981).

    Google Scholar 

  21. 21

    Rogers, S. & Pfuderer, P. Use of viruses as carriers of added genetic information. Nature 219, 749–751 (1968).

    CAS  PubMed  Google Scholar 

  22. 22

    Aposhian, H.V., Qasba, P.K., Osterman, J.V. & Waddell, A. Polyoma pseudovirions: An experimental model for the development of DNA for gene therapy. Fed. Proc. 31, 1310–1314 (1972).

    CAS  PubMed  Google Scholar 

  23. 23

    Aposhian, H.V. The use of DNA for gene therapy: the need, experimental approaches and implications. Persp. biol. Med. 14, 98–108 (1970).

    CAS  Google Scholar 

  24. 24

    Friedmann, T. In vitro reassembly of shell-like particles from disrupted polyoma virus. Proc. natn. Acad. Sci. U.S.A. 68, 2574–2578 (1971).

    CAS  Google Scholar 

  25. 25

    Friedmann, T. & Roblin, R. Gene therapy for human genetic disease? Science 178, 648–649 (1972).

    Google Scholar 

  26. 26

    Rogers, S., Lowenthal, A., Terheggen, H.G. & Columbo, J.P. Induction of arginase activity with the Shope papilloma virus in tissue culture cells from an argininemic patient. J. exp. Med. 137, 1091–1096 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Changeux, JP. On the arginase of Shope papillomas. Virology 31, 729–732 (1967).

    PubMed  Google Scholar 

  28. 28

    Terheggen, H.G., Lowenthal, A., Lavinha, F., Columbo, J.P. & Rogers, S. Unsuccesful trial of gene replacement in arginase deficiency. Z. Kinderheil. 119, 1–3 (1975).

    CAS  Google Scholar 

  29. 29

    Tatum, E.L. Molecular biology, nucleic acids and the future of medicine. Persp. biol. Med. 10, 19–32 (1966).

    CAS  Google Scholar 

  30. 30

    Davis, B.D. Prospects for genetic intervention in Man. Science 170, 1279–1283 (1970).

    CAS  PubMed  Google Scholar 

  31. 31

    Sinsheimer, R. The prospect for designed genetic change. Ann. Surg. 57, 134–142 (1969).

    CAS  Google Scholar 

  32. 32

    The Prospects of Gene Therapy (ed. Freese, E. ) (Bethesda, Fogarty International Center, NIH, Bethesda, 1972).

  33. 33

    Friedmann, T. & Roblin, R. Gene therapy for human genetic disease? Science 175, 949–955 (1972).

    CAS  PubMed  Google Scholar 

  34. 34

    Jackson, D.A., Symons, R.H. & Berg, P. Biochemical method for inserting new genetic information into DNA of simian virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 69, 2904–2909 (1972).

    CAS  Google Scholar 

  35. 35

    Friedmann, T. The future for gene therapy: A re-evaluation. Ann. N. Y. Acad. Sci. 265, 141–152 (1976).

    CAS  PubMed  Google Scholar 

  36. 36

    Morrow, J. The prospects for gene therapy in humans. Ann. N. Y. Acad. Sci. 265, 13–21 (1976).

    CAS  PubMed  Google Scholar 

  37. 37

    Neville, R. Gene therapy and the ethics of genetic therapeutics. Ann. N. Y. Acad. Sci. 265, 153–169 (1976).

    CAS  PubMed  Google Scholar 

  38. 38

    Maniatis, T., Jim, G.K., Efstradiadis, A. & Kafatos, F. Amplification and characterization of beta-globin gene synthesized in vitro. Cell 8, 163–182 (1976).

    CAS  PubMed  Google Scholar 

  39. 39

    Graham, F.L. & Van der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467 (1973).

    CAS  Google Scholar 

  40. 40

    Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell 14, 725–731 (1978).

    CAS  Google Scholar 

  41. 41

    Green, M.R., Treisman, R. & Maniatis, T. Transcriptional activation of cloned human beta-globin genes by viral immediate–early gene products. Cell 35, 137–148 (1982).

    Google Scholar 

  42. 42

    Mulligan, R.C., Howard, B.H. & Berg, P. Synthesis of rabbit beta-globin in cultured monkey kidney cells following infection with a SV40 beta-globin recombinant genome. Nature 277, 108–114 (1979).

    CAS  PubMed  Google Scholar 

  43. 43

    Mulligan, R.C. & Berg, P. Selection for animal cells that express the Escherichia coli gene for xanthine-guanine phosphoribosyltransferase. Proc. natn. Acad. Sci. U.S.A. 78, 2072–2076 (1981).

    CAS  Google Scholar 

  44. 44

    Mulligan, R.C. & Berg, P. Factors governing the expression of a bacterial gene in mammalian cells. Molec. Cell. Biol. 1, 449–459 (1981).

    CAS  PubMed  Google Scholar 

  45. 45

    Cline, M.J. et al. Gene transfer in intact animals. Nature 284, 422–425 (1980).

    CAS  PubMed  Google Scholar 

  46. 46

    Mercola, K.E., Stang, H.D., Browne, J., Salser, W. & Cline, M.J. Insertion of a new gene of viral origin into bone marrow cells of mic. Science 208, 1033–1035 (1980).

    CAS  PubMed  Google Scholar 

  47. 47

    Wade, N. Gene therapy pioneer draws Mikadoesque rap. Science 212, 1253 (1981).

    CAS  PubMed  Google Scholar 

  48. 48

    Wade, N. Gene therapy caught in more entaglements. Science 212, 24–25 (1981).

    CAS  PubMed  Google Scholar 

  49. 49

    Wade, N. UCLA gene therapy racked by friendly fire. Science 210, 509–511 (1980).

    CAS  PubMed  Google Scholar 

  50. 50

    Anderson, W.F. & Fletcher, J.C. Gene therapy in human beings: When is it ethical to begin? New. Engl. J. Med. 303, 1293–1297 (1980).

    CAS  PubMed  Google Scholar 

  51. 51

    Friedmann, T. Gene therapy: Fact and fiction. In Biology's New Approaches to Disease. (A Banbury Public Information Report, Cold Spring Harbor, 1983).

    Google Scholar 

  52. 52

    Temin, H.M. Mechanism of cell transformation by RNA tumor viruses. Ann. Rev. Med. 25, 609–649 (1971).

    CAS  Google Scholar 

  53. 53

    Temin, H.M. The DNA provirus hypothesis:the establishment and implications of RNA-directed DNA synthesis. Science 192, 1075–1080 (1976).

    CAS  PubMed  Google Scholar 

  54. 54

    Temin, H.M. & Mizutani, S. RNA-directed DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213 (1970).

    CAS  PubMed  Google Scholar 

  55. 55

    Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 226, 1209–1211 (1970).

    CAS  PubMed  Google Scholar 

  56. 56

    Shimotohno, K. & Temin, H.M. Formation of infectious progeny virus after insertion of herpes simplex thymidine kinase gene into DNA of an avian retrovirus. Cell 26, 67–77 (1981).

    CAS  PubMed  Google Scholar 

  57. 57

    Wei, C., Gibson, M., Spear, P.G. & Scolnick, E.M. Construction and isolation of a transmissible retrovirus containing the src gene from Harvey Murine Sarcoma Virus and the thymidine kinase gene from herpes simplex virus type 1. J. Virol. 39, 935–944 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Tabin, C.J., Hoffmann, J.W., Goff, S.P. & Weinberg, R.A. Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex thymidine kinase gene. Molec. cell. Biol. 2, 426–436 (1982).

    CAS  PubMed  Google Scholar 

  59. 59

    Doehmer, J. et al. Introduction of rat growth hormone into mouse fibroblasts via a retroviral DNA vector. Proc. natn. acad. sci. U.S.A. 79, 2268–2272 (1982).

    CAS  Google Scholar 

  60. 60

    Miller, A.D., Law, M.F. & Verma, I. Generation of helper-free amphotropic retroviruses that transduce a dominantacting, methotrexate-resistant dihydrofolate reductase gene. Molec. cell. Biol. 5, 431–437 (1985).

    CAS  PubMed  Google Scholar 

  61. 61

    Miller, A.D. & Buttimore, C. Redesign of retrovirus packaging lines to avoid recombination leading to helper virus production. Molec. cell. Biol. 6, 2895–2902 (1986).

    CAS  PubMed  Google Scholar 

  62. 62

    Mann, R., Mulligan, R.C. & Baltimore, D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159 (1983).

    CAS  PubMed  Google Scholar 

  63. 63

    Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: Separating viral genes on two different plasmids. J. Virol. 62, 1120–1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Temin, H.M. Retrovirus vectors for gene transfer: Efficient integration into and expression of exogenous DNA in vertebrate cell genomes. In Gene Transfer (ed. Kucherlapati, R.) 149–187 (Plenum Press, New York, 1986).

    Google Scholar 

  65. 65

    Jolly, D.J. et al. Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyltransferase. Proc. natn. Acad. Sci. U.S.A. 80, 477–481 (1983).

    CAS  Google Scholar 

  66. 66

    Miller, A.D., Jolly, D.J., Friedmann, T. and Verma, I.M. A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT. Proc. natn. Acad. Sci. U.S.A. 80, 4709–4713 (1983).

    CAS  Google Scholar 

  67. 67

    Willis, R.C. et al. Partial phenotypic correction of human Lesch-Nyhan (hypoxanthine-guanine phosphoribosyltransferase-deficient) lymphoblasts with a transmissible retroviral vector. J. biol. Chem. 259, 7842–7849 (1984).

    CAS  PubMed  Google Scholar 

  68. 68

    Kantoff, P.W. et al. Correction of adenosine deaminase deficiency in cultured human T and B cells by retrovirus-mediated gene transfer. Proc. natn. Acad. Sci. U.S.A. 83, 6563–6567 (1986).

    CAS  Google Scholar 

  69. 69

    Selden, R.F., Skoskiewicz, M.J., Howie, K.B., Russell, P.S. & Goodman, H.M. Implantation of genetically engineered fibroblasts into mice: Implications for gene therapy. Science 236, 714–718 (1987).

    CAS  PubMed  Google Scholar 

  70. 70

    Garver, R.I., Jr., Chytil, A., Courtney, M. and Crystal, R.G. Clonal gene therapy: Transplanted mouse fibroblast clones express human alphal-antitrypsin gene in vivo. Science 237, 762–764 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Palmer, T.D., Hock, R.A., Osborne, W.R.A. & Miller, A.D. Efficient retrovirus mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human. Proc. natn. Acad. Sci. U.S.A. 84, 1055–1059 (1987).

    CAS  Google Scholar 

  72. 72

    St Louis, D. & Verma, I.M. An alternative approach to somatic cell gene therapy. Proc. natn. Acad. Sci. U.S.A. 85, 3150–3154 (1988).

    CAS  Google Scholar 

  73. 73

    Rosenberg, M.B. et al. Grafting genetically modified cells to the damaged brain: Restorative effects of NGF expression. Science 242, 1575–1578 (1988).

    CAS  Google Scholar 

  74. 74

    Wolff, J.A. et al. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc. natn. Acad. Sci. U.S.A. 86, 9011–9014 (1989).

    CAS  Google Scholar 

  75. 75

    Miller, A.D., Eckner, R.J., Jolly, D.J., Friedmann, T. & Verma, I.M. Expression of a retrovirus encoding human HPRT in mice. Science 225, 630–632 (1984).

    CAS  PubMed  Google Scholar 

  76. 76

    Williams, D.A., Lemischka, I.R., Nathan, D.G. & Mulligan, R.C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310, 476–480 (1984).

    CAS  PubMed  Google Scholar 

  77. 77

    Gruber, H. et al. Retroviral vector-mediated gene transfer into human hematopoietic cells. Science 230, 1057–1061 (1985).

    CAS  PubMed  Google Scholar 

  78. 78

    Williams, D.A., Orkin, S.H. & Mulligan, R.C. Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine haematopoietic cells in vivo. Proc. natn. Acad. Sci. U.S.A. 83, 2566–2570 (1986).

    CAS  Google Scholar 

  79. 79

    Wolff, J.A. et al. Expression of retrovirally transduced genes in primary cultures of adult rat hepatocytes. Proc. natn. Acad. Sci. U.S.A. 84, 3344–3348 (1987).

    CAS  Google Scholar 

  80. 80

    Ledley, F.D., Darlington, G.J., Hahn, T. & Woo, S.L.C. Retroviral gene transfer into primary hepatocytes: Implications for genetic therapy of liver-specific functions. Proc. natn. Acad. Sci. U.S.A. 84, 5335–5339 (1987).

    CAS  Google Scholar 

  81. 81

    Morgan, J.R., Barrandon, Y., Green, H. & Mulligan, R.C. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 237, 1476–1479 (1987).

    CAS  PubMed  Google Scholar 

  82. 82

    Salminen, A., Elson, H.F., Mickley, L.A., Fojo, A.F. & Gottesman, M.M. Implantation of recombinant rat myoblasts into adult skeletal muscle: potential gene therapy. Hum. gene Ther. 2, 15–26 (1991).

    CAS  PubMed  Google Scholar 

  83. 83

    Barr, E. & Leiden, J.M. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 254, 1507–1509 (1991).

    CAS  Google Scholar 

  84. 84

    Dhawan, J. et al. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 254, 1509–1512 (1991).

    CAS  Google Scholar 

  85. 85

    Nabel, E.G., Plautz, G., Boyce, F.M., Stanley, J.C. & Nabel, G.J. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 244, 1342–1344 (1989).

    CAS  Google Scholar 

  86. 86

    Wilson, J.M. et al. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 244, 1344–1346 (1989).

    CAS  PubMed  Google Scholar 

  87. 87

    Nabel, E.G., Plautz, G. & Nabel, G.J. Site-specific expression in vivo by direct gene transfer into the arterial wall. Science 249, 1285–1288 (1990).

    CAS  Google Scholar 

  88. 88

    Rosenfeld, M.A. et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143–155 (1992).

    CAS  Google Scholar 

  89. 89

    Fletcher, J.C. Moral problems and ethical issues in prospective human gene therapy. Virginia Law Review 69, 515–546 (1983).

    PubMed  Google Scholar 

  90. 90

    Editorial, Gene therapy in man. Recommendation of European medical research councils. Lancet 1, 1271–1272 (1988).

  91. 91

    Anderson, W.F. Human gene therapy: Why draw a line? J. med. Philos. 14, 681–693 (1989).

    CAS  PubMed  Google Scholar 

  92. 92

    Friedmann, T. HPRT gene transfer as a model for gene therapy. In Genetic Engineering—Principles and Methods, Vol. 7 (eds. Setlow, J. & Hollaender, A. ) 263–282 (Plenum Press, New York, 1985).

    Google Scholar 

  93. 93

    Giblett, E.R., Anderson, J.E., Cohen, F., Pollara, B. & Meuwissen, H.J. Adenosine deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2, 1067–1069 (1972).

    CAS  PubMed  Google Scholar 

  94. 94

    van Beusechem, V.W. et al. Expression of human adenosine deaminase in mice transplanted with hemopoietic stem cells infected with amphotropic retroviruses. J. Exp. Med. 172, 729–736 (1990).

    CAS  PubMed  Google Scholar 

  95. 95

    Ferrari, G. et al. An in vivo model of somatic cell gene therapy for human severe combined immunodeficiency. Science 251, 1363–1366 (1991).

    CAS  PubMed  Google Scholar 

  96. 96

    Miyanohara, A., Sharkey, M.F., Witztum, J.L., Steinberg, D. & Friedmann, T. Efficient expression of retroviral vector-transduced human low density lipoprotein (LDL) receptor in LDL receptor-deficient rabbit fibroblasts in vitro. Proc. natn. Acad. Sci. U.S.A. 85, 6538–6542 (1988).

    CAS  Google Scholar 

  97. 97

    Chowdhury, J.R. et al. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR–deficient rabbits. Science 254, 1802–1805 (1991).

    CAS  Google Scholar 

  98. 98

    Ledley, F.D. & Woo, S.L. Molecular basis of alpha1-antitrypsin deficiency and its potential therapy by gene transfer. J. Inher. metab. Dis. 9, supp. 1, 85–91 (1989).

    Google Scholar 

  99. 99

    Rosenfeld, M.A. et al. Adenovirus-mediated transfer of a recombinant a1-antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434 (1991).

    CAS  Google Scholar 

  100. 100

    Kay, M.A. et al. Expression of human a1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc. natn. Acad. Sci. U.S.A. 89, 89–93 (1992).

    CAS  Google Scholar 

  101. 101

    Palmer, T.D., Thompson, A.R. & Miller, A.D. Production of human factor IX in animals by genetically modified skin fibroblasts: Potential therapy for hemophilia B. Blood 73, 438–445 (1989).

    CAS  PubMed  Google Scholar 

  102. 102

    Axelrod, J.H., Brinskhous, K.M. & Verma, I.M. Phenotypic correction of factor IX deficiency in skin fibroblasts of hemophilic dogs. Proc. natn. Acad. Sci. U.S.A. 87, 5173–5177 (1990).

    CAS  Google Scholar 

  103. 103

    Roman, M. et al. Circulating human or canine factor IX from retrovirally transduced primary myoblasts and established myoblast cell lines grafted into murine skeletal muscle. Somat. Cell molec. Genet. (in the press).

  104. 104

    Miyanohara, A., Johnson, P.A., Elam, R.L. et al. Direct gene transfer to the liver with herpes simplex virus type 1 vectors: Transient production of physiologically relevant levels of circulating factor IX. New. Biol. 4, 238–246 (1992).

    CAS  PubMed  Google Scholar 

  105. 105

    Yao, S.-N., Wilson, J.M., Nabel, E.G., Kurachi, S., Hachiya, H.L. & Kurachi, K. Expression of human factor IX in rat capillary endothelial cells: Toward somatic gene therapy for hemophilia B. Proc. natn. Acad. Sci. U.S.A. 88, 8101–8105 (1991).

    CAS  Google Scholar 

  106. 106

    Beutler, E. Gaucher disease: New molecular approaches to diagnosis and treatment. Science 256, 794–799 (1992).

    CAS  Google Scholar 

  107. 107

    Levine, F. & Friedmann, T. Gene therapy techniques. Curr. Opin. Biotech. 2, 840–844 (1992).

    Google Scholar 

  108. 108

    Felgner, P.L. et al. Lipofection: A highly efficient, lipid-mediated DNA-transfer procedure. Proc. natn. Acad. Sci. U.S.A. 84, 7413–7417 (1987).

    CAS  Google Scholar 

  109. 109

    Keating, A. & Toneguzzo, F. Gene transfer by electroporation: a model for gene therapy. Prog. Clin. biol. Res. 333, 491–498 (1990).

    CAS  PubMed  Google Scholar 

  110. 110

    Wolff, J.A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).

    CAS  Google Scholar 

  111. 111

    Acsadi, G. et al. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352, 815–818 (1991).

    CAS  Google Scholar 

  112. 112

    Berkner, K.L. Development of adenovirus vectors for the expression of heterologous genes. Bio Techniques 6, 616–629 (1988).

    CAS  Google Scholar 

  113. 113

    Sczakiel, G., Pawlita, M. & Kleinheinz, A. Specific inhibition of human immunodeficiency virus type 1 replication by RNA transcribed in sense and antisense orientation from the 5′-leader/gag region. Biochem. Biophys. Res. Commun. 169, 643–651 (1990).

    CAS  PubMed  Google Scholar 

  114. 114

    Levrero, M., Barban, V., Manteca, S., et al. Defective and nondefective adenovirus vectors for expressing foreign genes in vitro and in vivo. Gene 101, 195–202 (1991).

    CAS  PubMed  Google Scholar 

  115. 115

    McLaughlin, S.K., Collis, P., Hermonat, P.L. & Muzyczka, N. Adeno-associated virus general transduction vectors: Analysis of proviral structures. J. Virol. 62, 1963 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Spaete, R.R. & Frenkel, N. The herpes simplex virus amplicon: a new eukaryotic defective-virus cloning-amplifying vector. Cell 30, 295–304 (1982).

    CAS  Google Scholar 

  117. 117

    Tackney, C., Cachianes, G. & Silverstein, S. Transduction of the Chinese hamster ovary aprt gene by herpes simplex virus. J. Virol. 52, 606–614 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Geller, A.I. & Breakefield, X.O. A defective HSV-1 vector expresses Escherichia coli b-galactosidase in cultured peripheral neurons. Science 241, 1667–1669 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Chiocca, E.A. et al. Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol. 2, 739–746 (1990).

    CAS  PubMed  Google Scholar 

  120. 120

    Dobson, A.T., Margolis, T.P., Sedarati, F., Stevens, J.G. & Feldman, L.T. A latent, nonpathogenic HSV-1-derived vector stably expresses b-galactosidase in mouse neurons. Neuron 5, 353–360 (1990).

    CAS  Google Scholar 

  121. 121

    Johnson, P.A., Miyanohara, A., Levine, F., Cahill, T. & Friedmann, T. Cytotoxicity of a replication defective mutant of herpes simplex virus type 1. J. Virol. 66, 2952–2965 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Gansbacher, B. et al. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. exp. Med. 172, 1217–1224 (1990).

    CAS  PubMed  Google Scholar 

  123. 123

    Gansbacher, B. et al. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. 50, 7820–7825 (1990).

    CAS  Google Scholar 

  124. 124

    Golumbeck, P.T. et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254, 713–716 (1991).

    Google Scholar 

  125. 125

    Esumi, N., Hunt, B., Itaya, T. & Frost, P. Reduced tumorigenicity of murine tumor cells secreting gamma-interferon is due to non-specific host responses and is unrelated to class I major histocompatibility complex expression. Cancer Res. 51, 1185–1189 (1991).

    CAS  PubMed  Google Scholar 

  126. 126

    Cheng, J., Yee, J.-K., Yeargin, J., Friedmann, T. & Haas, M. Suppression of acute lymphoblastic leukemia by the human wild-type p53 gene. Cancer Res. 52, 222–226 (1992).

    CAS  PubMed  Google Scholar 

  127. 127

    Casey, G., Lo-Hsueh, M., Lopez, M.E., Vogelstein, B. & Stanbridge, E.J. Growth suppression of human breast cancer cells by the introduction of a wild-type p53 gene. Oncogene 6, 1791–1797 (1991).

    CAS  PubMed  Google Scholar 

  128. 128

    Chen, Y., Chen, P.-L., Arnaiz, N., Goodrich, D. & Lee, W.-H. Expression of wild-type p53 in human A673 cells suppresses tumorigenicity but not growth rate. Oncogene 6, 1799–1805 (1991).

    CAS  PubMed  Google Scholar 

  129. 129

    Tanaka, K. et al. Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosomes 5 or 18. Nature 349, 340–342 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Uzvolgyi, E. et al. Reintroduction of a normal retinoblastoma gene into retinoblastoma and osteosarcoma cells inhibits the replication-associated function of SV40 large T antigen. Cell Growth Diff. 2, 297–303 (1991).

    CAS  PubMed  Google Scholar 

  131. 131

    Gage, F.H. et al. Grafting genetically modified cells to the brain: Possibilities for the future. Neuroscience 23, 795–807 (1987).

    CAS  PubMed  Google Scholar 

  132. 132

    Huber, B.E., Richards, C.A. & Krenitsky, T.A. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: An innovative approach for cancer therapy. Proc. natn. Acad. Sci. U.S.A. 88, 8039–8043 (1991).

    CAS  Google Scholar 

  133. 133

    Culver, K.W. et al. In vivo gene transfer with retroviral vector-producing cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    CAS  Google Scholar 

  134. 134

    Young, J.A.T., Bates, P., Willert, K. & Varmus, H.E. Efficient incorporation of human CD4 protein into avian leukosis virus particles. Science 250, 1421–1423 (1990).

    CAS  PubMed  Google Scholar 

  135. 135

    Weerasinghe, M., Liem, S.E., Asad, S., Read, S.E. & Joshi, S. Resistance to human immunodeficiency virus type 1 infection in human CD4+ lymphocyte–derived cell lines conferred by using retroviral vectors expressing HIV-1 RNA-specific ribozyme. J. Virol. 65, 5531–5534 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Mitsuyama, H., Yarchian, R., Kageyama, S. & Broder, S. Targeted therapy of HIV-related disease. FASEB 5, 2369–2381 (1991).

    Google Scholar 

  137. 137

    Harrison, G.S. et al. Activation of a diphtheria toxin A gene by expression of human immunodeficiency virus type 1 Tat and Rev proteins in transfected cells. Hum. Gene Ther. 2, 53–60 (1001).

    Google Scholar 

  138. 138

    Venbatesh, L.K., Arens, M.Q., Subramanian, T. & Chinnedurai, G. Selective induction of toxicity to human cells expressing human immunodeficiency virus type 1 Tat by a conditionally cytotoxic adenovirus vector. Proc. natn. Acad. Sci. U.S.A. 87, 8746–8750 (1990).

    Google Scholar 

  139. 139

    Matthews, T.J., Langlois, A.J., Butto, S., Bolognesi, D.P. & Javaherian, K. HIV-neutralizing antibody and approaches to the envelope diversity problem. Adv. Exper. med. Biol. 303, 23–26 (1991).

    CAS  Google Scholar 

  140. 140

    Bolognesi, D.P. AIDS vaccines: Progress and unmet challenges. Ann. Intern. Med. 114, 161–162 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Friedmann, T. A brief history of gene therapy. Nat Genet 2, 93–98 (1992). https://doi.org/10.1038/ng1092-93

Download citation

Further reading