Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperative tumorigenic effects of germline mutations in Rb and p53

Abstract

The tumour suppressor genes Rb and p53 are mutated in several types of human cancer, and many tumour types carry mutations in both genes. To study how these genes normally function, we and others have created mouse strains with Rb and p53 mutations. Here we describe the phenotypic effects of combined germline mutations in these two tumour suppressor genes. Mice mutant for both genes have reduced viability and exhibit novel pathology including pinealoblastomas, islet cell tumours, bronchial epithelial hyperplasia and retinal dysplasia. These data indicate that mutations in Rb and p53 can cooperate in the transformation of certain cell types in the mouse.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Knudson, A.G. Antioncogenes and human cancer. Proc. natn. Acad. Sci. U.S.A. 90, 10914–10921 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Friend, S.J. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    CAS  Article  Google Scholar 

  3. 3

    Fung, Y.K. et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236, 1657–1661 (1987).

    CAS  Article  Google Scholar 

  4. 4

    Lee, W.J. et al. Human retinoblastoma susceptibility gene: cloning, identification and sequence. Science 235, 1394–1399 (1987).

    CAS  Article  Google Scholar 

  5. 5

    Weinberg, R.A. The retinoblastoma gene and gene product. Cancer Surv. 12, 43–57 (1992).

    CAS  PubMed  Google Scholar 

  6. 6

    Harris, C.C. & Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. New Engl. J. Med. 329, 1318–1327 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Malkin, D. et al. Germline p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    CAS  Article  Google Scholar 

  8. 8

    Malkin, D. p53 and the Li-Fraumeni syndrome. Cancer Genet. Cytogenet. 66, 83–92 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Van Dyke, T.A. Analysis of viral-host protein interactions and tumorigenesis in transgenic mice. Sem. cancer Biol. 5, 47–60 (1994).

    CAS  Google Scholar 

  10. 10

    Shew, H.-Y., Ling, N., Yang, X., Fodstad, O. & Lee, W.-H. Antibodies detecting abnormalities of the retinoblastoma susceptibility gene product (pp110Rb) in osteosarcomas and synovial sarcomas. Oncogene Res. 1, 205–214 (1989).

    Google Scholar 

  11. 11

    Diller, L. et al. p53 functions as a cell cycle control protein In osteosarcomas. Molec. cell. Biol. 10, 5772–5781 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Stratton, M.R. et al. Mutation of the p53 gene in human soft tissue sarcomas: association with abnormalities of the RB1 gene. Oncogene 5, 1297–1301 (1990).

    CAS  PubMed  Google Scholar 

  13. 13

    Rygaard, K., Sorenson, G.D., Pettengill, O.S., Cate, C.C. & Spang, T.M. Abnormalities in structure and expression of the retinoblastoma gene in small cell lung cancer cell lines and xenografts in nude mice. Cancer Res. 50, 5312–5317 (1990).

    CAS  PubMed  Google Scholar 

  14. 14

    Hensel, C.H. et al. Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res. 50, 3067–3072 (1990).

    CAS  PubMed  Google Scholar 

  15. 15

    Hensel, C.H., Xiang, R.H., Sakaguchi, A.Y. & Naylor, S.L. Use of the single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer. Oncogene 6, 1067–1071 (1991).

    CAS  PubMed  Google Scholar 

  16. 16

    Prosser, J., Thompson, A.M., Cranston, G. & Evans, H.J. Evidence that p53 behaves as a tumor suppressor gene in sporadic breast tumors. Oncogene 5, 1573–1579 (1990).

    CAS  PubMed  Google Scholar 

  17. 17

    Varley, J.M. et al. Loss of chromosome 17p13 sequences and mutation of p53 In human breast carcinomas. Oncogene 6, 413–421 (1991).

    CAS  PubMed  Google Scholar 

  18. 18

    Davidoff, A.M., Humphrey, P.A., Iglehart, J.K. & Marks, J.R. Genetic basis for p53 overexpression in human breast cancer. Proc. natn. Acac. Sci. U.S.A. 88, 5006–5010 (1991).

    CAS  Article  Google Scholar 

  19. 19

    T'Ang, A., Varley, J.M., Chakraborty, S., Murphree, A.L. & Fung, Y.-K.T. Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science 241, 1797–1800 (1988).

    Article  Google Scholar 

  20. 20

    Varley, J.M. et al. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours. Oncogene 4, 725–729 (1989).

    CAS  PubMed  Google Scholar 

  21. 21

    Crook, T., Fisher, C. & Vousden, K.H. p53 point mutation in HPV negative human cervical carcinoma cell lines. Oncogene 6, 873–875 (1991).

    CAS  PubMed  Google Scholar 

  22. 22

    Scheffner, M., Munger, K., Byrne, J.C. & Howley, P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. natn. Acad. Sci. U.S.A. 88, 5523–5527 (1991).

    CAS  Article  Google Scholar 

  23. 23

    Ruggeri, B. et al. Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes. Oncogene 7, 1503–1511 (1992).

    CAS  Google Scholar 

  24. 24

    Hollingsworth, J., R.E., Chen, P.-L. & Lee, W.-H. Integration of cell cycle control with transcriptional regulation by the retinoblastoma protein. Curr. Op. cell Biol. 5, 194–200 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Martinez, J., Georgoff, I., Martinez, J. & Levine, A.J. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev. 5, 151–159 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Mercer, W.E. et al. Negative growth regulation in a glioblastoma tuumor cell line that conditionally expressed human wild-type p53. Proc. natn. Acad. Sci. U.S.A. 87, 6166–6170 (1990).

    CAS  Article  Google Scholar 

  28. 28

    Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K.V. & Vogelstein, B. Supression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990).

    CAS  Article  Google Scholar 

  29. 29

    Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  Google Scholar 

  30. 30

    Kastan, M. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    CAS  Article  Google Scholar 

  31. 31

    Shaw, P. et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. natn. Acad. Sci. U.S.A. 89, 4495–4499 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeioid leukaemic cells that is inhibited by interteukln-6. Nature 352, 345–347 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Lowe, S.W., Schmitt, E.S., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    CAS  Article  Google Scholar 

  34. 34

    Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D.E. p53-dependent apoptosis modulates the cytoxioity of anticancer agents. Cell 74, 957–967 (1993).

    CAS  Article  Google Scholar 

  35. 35

    Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Lee, E.Y.-H.P. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–295 (1992).

    CAS  Article  Google Scholar 

  37. 37

    Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    CAS  Article  Google Scholar 

  38. 38

    Clarke, A.R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    CAS  Article  Google Scholar 

  39. 39

    Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible; to spontaneous tumours. Nature 356, 215–221 (1992).

    CAS  Article  Google Scholar 

  40. 40

    Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    CAS  Article  Google Scholar 

  41. 41

    Harvey, M. et al. Spontaneous and carcinogen-induced tumours in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    CAS  Article  Google Scholar 

  42. 42

    Aguayo, S.M. et al. Brief report: idiopathlc diffuse hyperplasia of pulmonary endocrine cells and airways disease. New Engl. J. Med. 327, 1285–1288 (1992).

    CAS  Article  Google Scholar 

  43. 43

    Lane, D.P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    CAS  Article  Google Scholar 

  44. 44

    Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    CAS  Article  Google Scholar 

  45. 45

    Yin, Y., Tainksy, M.A., Bischoff, F.Z., Strong, L.C. & Wahl, G.M. Wild-type p53 restores cells cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70, 937–948 (1992).

    CAS  Article  Google Scholar 

  46. 46

    Lowe, S.W., Jacks, T., Housman, D.E. & Ruley, H.E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. natn. Acad. Sci. U.S.A. 91, 2026–2030 (1994).

    CAS  Article  Google Scholar 

  47. 47

    Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7, 546–554 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Windle, J.J. et al. Retinoblastoma in transgenic mice. Nature 343, 665–668 (1990).

    CAS  Article  Google Scholar 

  49. 49

    Al-Ubaidi, M.R. et al. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J. Cell Biol. 119, 1681–1687 (1992).

    CAS  Article  Google Scholar 

  50. 50

    Dyson, N., Buchkovich, K., Whyte, P. & Harlow, E. The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58, 249–255 (1989).

    CAS  Article  Google Scholar 

  51. 51

    Ewen, M.E. et al. An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120. Cell 58, 257–267 (1989).

    CAS  Article  Google Scholar 

  52. 52

    Wurtman, R.J. & Moskowitz, M.A. The pineal organ. New Engl. J. Med. 296, 1329–1333; 1383–1386 (1977).

    CAS  Article  Google Scholar 

  53. 53

    Jakobiec, F.A., Tso, M.O.M., Zimmerman, L.E. & Danis, P. Retinoblastoma and intracranial malignancy. Cancer 39, 2048–2058 (1977).

    CAS  Article  Google Scholar 

  54. 54

    Stannard, C., Knight, B.K. & Sealy, R. Pineal malignant neoplasm in association with hereditary retinoblastoma. Br. J. Ophthalmol. 69, 749–753 (1985).

    CAS  Article  Google Scholar 

  55. 55

    Pesin, S.R. & Shields, J.A. Seven cases of trilateral retinoblastoma. Am. J. Ophthalmol. 107, 121–126 (1989).

    CAS  Article  Google Scholar 

  56. 56

    Vogelstein, B. & Kinzler, K.W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    CAS  Article  Google Scholar 

  57. 57

    Hanahan, D. Transgenic mice as probes into complex systems. Science 246, 1265–1275 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, B., Remington, L., Albert, D. et al. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 7, 480–484 (1994). https://doi.org/10.1038/ng0894-480

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing