Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ovine Booroola fecundity gene (FecB) is linked to markers from a region of human chromosome 4q

Abstract

The autosomal Booroola fecundity gene (FecB) mutation in sheep increases ovulation rate and litter size, with associated effects on ovarian physiology and hormone profiles. Analysis of segregation in twelve families (379 female progeny) identified linkage between the mutation, two microsatellite markers (OarAE101 and OarHH55, Zmax >9.0) and epidermal growth factor (EGF) from human chromosome 4q25 (Zmax >3.0). The marker OarAE101 was linked to secreted phosphoprotein 1 (SPP1, which maps to chromosome 4q21–23 in man) in the test pedigrees and independent families (Zmax >9.7). The identification of linkage between the FecB mutation and markers from human chromosome 4q is an important step towards further understanding the control of ovulation rates in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bindon, B.M. & Piper, L.R. The reproductive biology of prolific sheep breeds. Oxford rev. Reprod. Biol. 8, 414–451 (1986).

    CAS  Google Scholar 

  2. Piper, L.R. & Bindon, B.M. The Booroola Merino and the performance of medium non-Peppin crosses at Armidale. In The Booroola Merino (eds Piper, LR. et al.) 9–20 (CSIRO, Melbourne, 1982).

    Google Scholar 

  3. Davis, G.H., Montgomery, G.W., Allison, A.J., Kelly, R.W. & Bray, A.R. Segregation of a major gene influencing fecundity in progeny of Booroola sheep. N.Z. J. agric. Res. 25, 525–529 (1982).

    Article  Google Scholar 

  4. Davis, G.H. & Kelly, R.W. Segregation of a major gene influencing ovulation rate in progeny of Booroola sheep in commercial and research flocks. Proc. N.Z. Soc. anim. Prod. 43, 197–199 (1983).

    Google Scholar 

  5. COGNOSAG. Standardised Genetic Nomenclature for Sheep and Goats 49–52 (Lavoisier, Paris, 1989).

  6. Piper, L.R., Bindon, B.M. & Davis, G.H. The single gene inheritance of the high litter size of the Booroola Merino. in Genetics of Reproduction in Sheep (eds Land, R.B. et al.) 115–125 (Butterworths, London, 1985).

    Chapter  Google Scholar 

  7. Montgomery, G.W., McNatty, K.P. & Davis, G.H. Physiology and molecular genetics of mutations that increase ovulation rate in sheep. Endocr. Rev. 13, 309–328 (1992).

    Article  CAS  Google Scholar 

  8. McNatty, K.P. & Henderson, K.M. Gonadotrophins, fecundity genes and ovarian follicular function. J. steroid Biochem. 27, 365–373 (1987).

    Article  CAS  Google Scholar 

  9. Montgomery, G.W., Sise, J.A., Greenwood, P.J. & Fleming, J.S. Booroola F gene mutation in sheep is not located close to the FSH-β gene. J. molec. Endo. 5, 167–173 (1990).

    Article  CAS  Google Scholar 

  10. Crawford, A.M., Buchanan, F.C. & Swarbrick, P.A. The use of dinucleotide repeats or microsatellites as genetic markers in domestic animals. Proc. N.Z. Soc. anim. Prod. 51, 79–83 (1991).

    Google Scholar 

  11. Montgomery, G.W., Tate, M., Crawford, A.M. & Hill, D.F. The application of genetic linkage in the search for the Booroola gene. Proc. Aust. Assoc. anim. Breed. Genet. 8, 191–194 (1990).

    Google Scholar 

  12. Mulsant, P. et al. Genetical and biochemical approaches to identify and isolate the Booroola F gene. in Major genes for reproduction in sheep (eds Elsen, J.M. et al.) 259–268 (INRA, Paris,1991

    Google Scholar 

  13. Montgomery, G.W. et al. Genetic linkage approaches to the identification of the Booroola F gene. in Major gens for reproduction in sheep (eds Elsen, J.M. et al.) 269–274 (INRA, Paris, 1991).

    Google Scholar 

  14. Tate, M.L., Manly, H.C., Dodds, K.G. & Montgomery, G.W. A genetic linkage analysis between protein polymorphisms and the FecB major gene in sheep. Anim. Genet. 23, 417–424 (1992).

    Article  CAS  Google Scholar 

  15. Dodds, K.G., Montgomery, G.W. & Tate, M.L. Testing for linkage between a marker locus and a major gene locus in half sib families. J. Hered. 84, 43–48 (1993).

    Article  Google Scholar 

  16. Montgomery, G.W., Sise, J.A., Penty, J.M., Tou, H.M. & Hill, D.F. Sheep linkage mapping: restriction fragment length polymorphism detection with heterologous cDNA probes. Anim. Genet. 23, 411–416 (1992).

    Article  CAS  Google Scholar 

  17. Montgomery, G.W., Penty, J.M., Sise, J.A. & Tou, H.M. Genes for the α and β chains of FSH are excluded as sites for the Booroola FecB mutation in sheep. J. reprod. Fert. 95, 895–901 (1992).

    Article  CAS  Google Scholar 

  18. Kerr, J.M., Fisher, L.W., Termine, J.D. & Young, M.F. The cDNA cloning and RNA distribution of bovine osteopontin. Gene 108, 237–243 (1991).

    Article  CAS  Google Scholar 

  19. Murray, J.C., DeHaven, C.R. & Bell, G.I. RFLPs for epidermal growth factor (EGF), a single copy sequence at 4q25–4q27. Nucl. Acids Res. 14, 5117 (1986).

    Article  CAS  Google Scholar 

  20. Goldberger, G., Bruns, G.A.P., Rits, M., Edge, M.D. & Kwiatkowski, D.J. Human complement factor I: Analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4. J. biol. Chem. 262, 10065–10071 (1987).

    CAS  PubMed  Google Scholar 

  21. Crawford, A.M., Buchanan, F.C. & Swarbrick, P.A. Ovine dinucleotide repeat polymorphism at the MAF18 locus. Anim. Genet. 21, 433–434 (1990).

    Article  CAS  Google Scholar 

  22. Swarbrick, P.A., Buchanan, F.C. & Crawford, A.M. Ovine dinucleotide repeat polymorphism at the MAF23 locus. Anim. Genet. 22, 191 (1990).

    Article  Google Scholar 

  23. Buchanan, F.C., Swarbrick, P.A. & Crawford, A.M. Ovine dinucleotide repeat polymorphism at the MAF4 locus. Anim. Genet. 22, 373–374 (1991).

    Article  CAS  Google Scholar 

  24. Threadgill, D.W. & Womack, J.E. Genomic analysis of the major bovine milk protein genes. Nucl. Acids Res. 18, 6935–6942 (1990).

    Article  CAS  Google Scholar 

  25. Ansari, H.A. et al. Resolving ambiguities in the sheep karyotype: a molecular cytogenetic approach. Proc. 10th Europ. Colloq. cytogenet. domestic anim. (in the press).

  26. Charbot, B., Stephenson, D.A., Chapman, V.M., Besmer, P. & Bernstein, A. The proto-oncogene c–kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335, 88–89 (1988).

    Article  Google Scholar 

  27. Geissler, E.N., Ryan, M.A. & Housman, D.E. The dominant white-spotting (W) locus of the mouse encodes the c–kit proto-oncogene. Cell 55, 185–192 (1988).

    Article  CAS  Google Scholar 

  28. Nocka, K. et al. Expression of c–kit gene products in known cellular targets of W mutations in normal and Wmutant mice — Evidence for an impaired c–kit kinase in mutant mice. Genes Dev. 3, 816–826 (1989).

    Article  CAS  Google Scholar 

  29. Russell, E.S. Hereditary anemias of the mouse. Adv. Genet. 20, 357–459 (1979).

    Article  CAS  Google Scholar 

  30. Silvers, K. The Coat Colours of Mice (Springer-Verlag, New York, 1979).

    Book  Google Scholar 

  31. Bendell, J.J. & Dorrington, J.H. Epidermal growth factor influences growth and differentiation of rat granulosa cells. Endocrinology 127, 533–540 (1990).

    Article  CAS  Google Scholar 

  32. Lord, E.A. & Hill, D.F. Booroola gene carrries. Proc. NZ Soc. anim. Prod. 51, 91–93 (1991).

    Google Scholar 

  33. Fleming, J.S. et al. Expression of the genes for α inhibin, βA inhibin and follistatin in the ovaries of Booroola ewes which were homozygotes or non-carriers of the fecundity gene FeeB. J. molec. Endo. 8, 265–273 (1992).

    Article  CAS  Google Scholar 

  34. Webb, R. & Gauld, I.K. Folliculogenesis in sheep: control of ovulation rate. in Genetics of Reproduction in Sheep (eds Land, R. B. et al.) 261–274 (Butterworths, London, 1985).

    Chapter  Google Scholar 

  35. Henderson, K.M. & McNatty, K.P. Factors influencing ovulation rate in sheep. Proc. Asian-Australasian Assoc. anim. Prod. 4, 130–138 (1987).

    Google Scholar 

  36. McNatty, K.P. et al. FSH influences follicle viability, oestradiol biosynthesis and ovulation rate in Romney ewes. J. reprod. Fert. 75, 121–131 (1985).

    Article  CAS  Google Scholar 

  37. Henderson, K.M., Savage, L.C., Ellen, R.L., Ball, K. & McNatty, K.P. Consequences of increasing or decreasing plasma FSH concentrations during the preovulatory period in Romney ewes. J. reprod. Fert. 84, 187–196 (1988).

    Article  CAS  Google Scholar 

  38. Parisi, P., Gatti, M., Prinzi, G. & Caperna, G. Familial incidence of twinning. Nature 304, 626–628 (1983).

    Article  CAS  Google Scholar 

  39. Philippe, P. Genetic epidemiology of twinning: A population-based study. Am. J. med. Gen. 20, 97–105 (1985).

    Article  CAS  Google Scholar 

  40. Martin, N.G. et al. Pituitary-ovarian function in mothers who have had two sets of dizygotic twins. Fertil. Steril. 41, 878–880 (1984).

    Article  CAS  Google Scholar 

  41. Wyshak, G. & White, C. Genealogical study of human twinning. Am. J. public Health 55, 1586–1593 (1965).

    Article  CAS  Google Scholar 

  42. Bradford, G.E., Inounou, I., Iniguez, L.C., Tiesnamurti, B. & Thomas, D.L. The prolificacy gene of Javanese sheep. in Major genes for reproduction in sheep (eds Elsen, J. M. et al.) 67–73 (INRA, Paris, 1991).

    Google Scholar 

  43. Davis, G.H., McEwan, J.C., Fennessy, P.F., Dodds, K.G. & Farquhar, P.A. Evidence for the presence of a major gene influencing ovulation rate on the X chromosome of sheep. Biol. Reprod. 44, 620–624 (1991).

    Article  CAS  Google Scholar 

  44. Eythorsdottir, E., Adalsteinsson, S., Jonmundsson, J.V. & Hanrahan, J.P. Research work on the Icelandic Thoka gene. in Major genes for reproduction in sheep> (eds Elsen, J. M. et al.) 75–84 (INRA, Paris, 1991).

    Google Scholar 

  45. Hanrahan, J.P. Evidence for single gene effects on ovulation rate in the Cambridge and Belclare breeds. in Major genes for reproduction in sheep (eds Elsen, J. M. et al.) 93–102 (INRA, Paris, 1991).

    Google Scholar 

  46. Martyniuk, E. & Radomska, M.J. A single gene for prolificacy in Olkuska sheep. in Major genes for reproduction in sheep (eds Elsen, J.M.et al.) 85–92 (INRA, Paris, 1991).

    Google Scholar 

  47. Montgomery, G.W. & Hawker, H. Seasonal reproduction in ewes selected on seasonal changes in wool production. J. reprod. Fert. 79, 207–213 (1987).

    Article  CAS  Google Scholar 

  48. Montgomery, G.W. & Sise, J.A. Extraction of DNA from sheep white blood cells. NZ. J. agric. Res. 33, 437–441 (1990).

    Article  Google Scholar 

  49. Rigby, D.W.J., Dieckmann, M., Rhodes, C. & Berg, P. Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. molec. Biol. 113, 237–251. (1977).

    Article  CAS  Google Scholar 

  50. Brown, W.M., Dziegielewska, K.M., Foreman, R.C. & Saunders, N.R. Nucleotide and deduced amino acid sequence of sheep serum albumin. Nucl. Acids Res. 17, 10495 (1989).

    Article  CAS  Google Scholar 

  51. Stewart, A.F., Willis, I.M. & MacKinlay, A.G. Nucleotide sequences of bovine alpha–s1- and kappa-casein cDNAs. Nucl. Acids Res. 12, 3895–3907 (1984).

    Article  CAS  Google Scholar 

  52. Kelly, J.D. et al. PDGF stimulates PDGF receptor dimerization and intersubunit trans-phosphorylation. J. biol. Chem. 266, 8987–8992 (1991).

    CAS  PubMed  Google Scholar 

  53. Lange, K., Weeks, D. & Boehnke, M. Programs for pedigree analysis: MENDEL, FISHER and dGENE. Genetic Epidemiol 5, 471–472 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montgomery, G., Crawford, A., Penty, J. et al. The ovine Booroola fecundity gene (FecB) is linked to markers from a region of human chromosome 4q. Nat Genet 4, 410–414 (1993). https://doi.org/10.1038/ng0893-410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0893-410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing