Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome

Abstract

Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities1,2,3,4,5. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-α kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterization of extended sets of microsatellite markers in the region linked to WRS on chromosome 2 in families WRS1 and WRS2.
Figure 2: Sequence chromatograms for the regions of the mutations in the index patients and normal controls from the WRS1 family (a; 1103insT) and the WRS2 family (b; 1832G→A).
Figure 3: Effect of EIF2AK3 mutations on the protein.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Wolcott, C.D. & Rallison, M.V. Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia. J. Pediatr. 80, 292–297 (1972).

    CAS  Article  Google Scholar 

  2. 2

    Goumy, P. et al. Syndrome de transmission recessive autosomique, associant un diabete congenital et des desoirdres de la croissances des epiphyses. Arch. Fr. Pediatr. 37, 323–328 (1980).

    CAS  PubMed  Google Scholar 

  3. 3

    Stoss, H., Pesch, H.-J., Pontz, B., Otten, A. & Spranger, J. Wolcott-Rallison syndrome: diabetes mellitus and spondylo-epiphyseal dysplasia. Eur. J. Pediatr. 138, 120–129 (1982).

    CAS  Article  Google Scholar 

  4. 4

    Al-Gazali, L.I., Makia, S. & Hall, C.M. Wolcott-Rallison syndrome. Clin. Dysmorphol. 4, 227–233 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Thornton, C.M., Carson, D.J. & Stewart, F.J. Autopsy findings in the Wolcott-Rallison syndrome. Pediatr. Pathol. Lab. Med. 17, 487–496 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Inoue, H. et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nature Genet. 20, 143–148 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Winter, W.E., Nakamura, M. & House, D.V. Monogenic diabetes mellitus in youth. The MODY syndromes. Endocrinol. Metab. Clin. North. Am. 28, 765–785 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Froguel, P. & Velho, G. Molecular genetics of maturity-onset diabetes of the young. Trends Endocrinol. Metab. 10, 142–146 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Nicolino, P.M., Dupin, H., Macabeo, V., Treppoz, S. & Chatelain, P.G. Wolcott-Rallison syndrome (diabetes mellitus and spondyloepiphyseal dysplasia): a plausible existence of a gene(s) important for the maturation of neonatal pancreatic β cell function. Horm. Res. 50, A215 (1998).

    Google Scholar 

  11. 11

    Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing β-cells in the mammalian pancreas. Nature 386, 399–402 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Bonthron, D.T., Dunlop, N., Barr, D.G., El Sanousi, A.A. & Al Gazali, L.I. Organisation of the human PAX4 gene and its exclusion as a candidate for the Wolcott-Rallison syndrome. J. Med. Genet. 35, 288–292 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Stewart, F.J. et al. Wolcott-Rallison syndrome associated with congenital malformations and a mosaic deletion 15q 11–12. Clin. Genet. 49, 152–155 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Shi, Y. et al. Characterization of a mutant pancreatic eIF-2α kinase, PEK, and co-localization with somatostatin in islet δ cells. J. Biol. Chem. 274, 5723–5730 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Hayes, S.E., Conner, L.J., Stramm, L.E. & Shi, Y. Assignment of pancreatic eIF2α kinase (EIF2AK3) to human chromosome band 2p12 by radiation hybrid mapping and in situ hybridization. Cytogenet. Cell Genet. 86, 327–328 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Hanks, S.K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18, 7499–7509 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Harding, H.P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Srivastava, S.P., Kumar, K.U. & Kaufman, R.J. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J. Biol. Chem. 273, 2416–2423 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Goodison, S., Kenna, S. & Ashcroft, S.J. Control of insulin gene expression by glucose. Biochem. J. 285, 563–568 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Gilligan, M. et al. Glucose stimulates the activity of the guanine nucleotide-exchange factor eIF-2B in isolated rat islets of Langerhans. J. Biol. Chem. 271, 2121–2125 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Hashimoto, L. et al. Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 371, 161–164 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Davies, J.L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Mein, C.A. et al. A search for type I diabetes susceptibility genes in families from the United Kingdom. Nature Genet. 19, 297–300 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Concannon, P. et al. A second generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nature Genet. 19, 292–296 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Hanis, C.L. et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nature Genet. 13, 161–166 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Pratley, R.E. et al. An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians. J. Clin. Invest. 101, 1757–1764 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl Acad. Sci. USA 81, 3443–3446 (1984).

    CAS  Article  Google Scholar 

  30. 30

    Rosenblum, B.B. et al. New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res. 25, 4500–4504 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Macabéo for referring family WRS1; the families for collaboration; and E. Melanitou and E. Villard for helpful comments on the manuscript. C.J. is a Wellcome Trust Senior Fellow.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cécile Julier.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delépine, M., Nicolino, M., Barrett, T. et al. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25, 406–409 (2000). https://doi.org/10.1038/78085

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing