Adenosine–deaminase–deficient mice die perinatally and exhibit liver–cell degeneration, atelectasis and small intestinal cell death

Article metrics


We report the generation and characterization of mice lacking adenosine deaminase (ADA). In humans, absence of ADA causes severe combined immunodeficiency. In contrast, ADA–deficient mice die perinatally with marked liver–cell degeneration, but lack abnormalities in the thymus. The ADA substrates, adenosine and deoxyadenosine, are increased in ADA–deficient mice. Adenine deoxyribonucleotides are only modestly elevated, whereas S–adenosylhomocysteine hydrolase activity is reduced more than 85%. Consequently, the ratio of S–adenosylhomocysteine (AdoMet) to S–adenosyl homocysteine (AdoHcy) is reduced threefold in liver. We conclude that ADA plays a more critical role in murine than human fetal development. The murine liver pathology may be due to AdoHcy–mediated inhibition of AdoMet–dependent transmethylation reactions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Chinsky, J.M. et al. Developmental expression of adenosine deaminase in the upper alimentary tract of mice. Differentiation 42, 172–183 (1990).

  2. 2

    Ramamurthy, V. et al. Prenatal and postnatal expression of adenosine deaminase in mice. in Molecular and cellular mechanisms of human hypersensitivity and autoimmunity. (ed. Goetzl, E.J.) 125–131 (Liss, New York, 1989).

  3. 3

    Aronow, B. et al. Evidence for a complex regulatory array in the first intron of the human adenosine deaminase gene. Genes Dev. 3, 1384–1400 (1989).

  4. 4

    Witte, D.P., Wiginton, D.A., Hutton, J.J. & Aronow, B.J. Coordinate developmental regulation of purine catabolic enzyme expression in gastrointestinal and postimplantation reproductive tracts. J. Cell Biol. 115, 179–190 (1991).

  5. 5

    Hirschhorn, R. Adenosine deaminase deficiency. in Immunodeficiency Reviews (ed. Rosen, F.S. & Seligmann, M.) 175–198 (Harwood Academic, New York, 1990).

  6. 6

    Giblett, E.R., Anderson, J.E., Cohen, F., Pollara, B. & Meuwissen, H.J. Adenosine deaminase deficiency in two patients with severely impaired cellular immunity. Lancet II, 1067–1069 (1972).

  7. 7

    Hershfield, M.S. & Mitchell, B.S. Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. in The Molecular and Metabolic Basis of Inherited Disease (ed. Scriver, C.R., Beaudet, A.L, Sly, W.S. & Valle, D.) 1725–1768 (McGraw-Hill, New York, 1994).

  8. 8

    Ratech, H. et al. Pathologic findings in adenosine-deaminase-deficient severe combined immunodeficiency I. Kidney, adrenal gland, and chondro-osseous tissue alterations. Am. J. Pathol. 120, 157–169 (1985a).

  9. 9

    Ratech, H., Hirschhorn, R. & Greco, A. Pathologic findings in adenosine deaminase-severe combined immunodeficiency II. Thymus, spleen, Lymph node, and gastrointestinal tract lymphoid tissue alterations. Am. J. Pathol. 135, 1145–1156 (1989).

  10. 10

    Hoogerbrugge, P., van Beusechem, V.W., Kaptein, L.C.M., Einerhand, M.P.W. & Valerio, D. Gene therapy for adenosine deaminase deficiency. Brit. med. Bull. 51, 72–61 (1995).

  11. 11

    Cohen, A., Hirschhorn, R., Horowitz, S.D., Rubinstein, A. & Polmar, S.H. Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc. natn. Acad. Sci. U.S.A. 75, 472–476 (1978).

  12. 12

    Coleman, M.S. et al. Identification and quantitation of adeninedeoxynucleotides in erythrocytes of a patient with adenosine deaminase deficiency and severe immunodeficiency. J. biol. Chem. 253, 1619–1626 (1978).

  13. 13

    Ullman, B., Gudas, L.J., Cohen, A. & Martin, D.W.J. Deoxyadenosin metabolism and cytotoxicity in cultured mouse lymphoma cells A model for immunodeficiency disease. Cell 14, 365–375 (1978).

  14. 14

    Seto, S., Carrera, C.J., Kubota, M., Wasson, D.B. & Carson, D.A. Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J. Clin. Invest. 75, 377–383 (1985).

  15. 15

    Kizaki, H., Shimada, H., Ohsaka, F., Sakurada, T. Adenosine, deoxyadenosine, and deoxyguanosine induce DNAcleavage in mouse thymocytes. J. Immunol. 141, 1652–1657 (1988).

  16. 16

    Kredich, M.W. & Martin, D.W.J. Role of S-adenosylhomocysteine in adenosine-mediated toxicity in cultured mouse T-lymphoma cells. Cell 12, 931–938 (1977).

  17. 17

    Hershfield, M.S. Apparent suicide inactivation of human lymphoblast S-adenosyl-homocysteine hydrolase by 2′-deoxyadenosine and adenine arabinoside. J. biol. Chem. 254, 22–25 (1979b).

  18. 18

    Hershfield, M.S., Kredich, N.M., Ownby, D.R., Ownby, H. & Buckley, R. In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2′-deoxyadenosine in adenosine deaminase-deficient patients. J. Clin. Invest. 63, 807–811 (1979a).

  19. 19

    Kredich, N.M., Hershfield, M.S. & Johnston, J.M. Role of methylation in adenosine toxicity in adenosine deaminase inhibited cells. in Inborn Errors of Specific Immunity. (ed. Pollara, B., Pickering, J., Meuwissen, H.J. & Porter, I.H.) 261–268 (Academic Press, New York, 1979).

  20. 20

    Hershfield, M.S. & Kredich, N.M. Resistance of an adenosine kinase-deficient human lymphoblastoid cell line to effects of deoxyadenosine on growth, S-adenosylhomocysteine hydrolase inactivation, and dATP accumulation. Proc. natn. Acad. Sci. U.S.A. 77, 4292–4296 (1980).

  21. 21

    Greenberg, M.L., Chaffee, S. & Hershfield, M.S. Basis for resistance to 3-deazaaristeromycin, an inhibitor of S-adenosylhomocysteine hydrolase, in human B-lymphoblasts. J. biol. Chem. 264, 795–803 (1989).

  22. 22

    Wolos, J.A. et al. Selective inhibition of T-cell activation by an inhibitor of S-adenosyl-L-homocysteine hydrolase. J. Immunol. 150, 3264–3273 (1993).

  23. 23

    Hirschhorn, R. Overview of biochemical abnormalities and molecular genetics of adenosine deaminase deficiency. Ped. Res. 33, s35–s41 (1993).

  24. 24

    Santisteban, I. et al. Novel splicing, missense and deletion mutations in 7 adenosine deaminase deficient patients with late/delayed onset of combined immunodeficiency disease: contribution of genotype to phenotype. J. Clin. Invest. 92, 2291–2302 (1993).

  25. 25

    Shovlin, C.L. et al. Adult onset immunodeficiency caused by inherited adenosine deaminase deficiency. J. Immunol. 153, 2331–2339 (1994).

  26. 26

    teRiele, H., Robanus-Maandag, E. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. natn. Acad. Sci. U.S.A. 89, 5128–5132 (1992).

  27. 27

    Wilson, O.K., Rudolph, F.B. & Quiocho, F.A. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science 252, 1278–1284 (1991).

  28. 28

    Akeson, A.L., Winginton, D.A., Dusing, M.R., States, J.C. & Hutton, J.J. Mutant human adenosine deaminase alleles and their expression by transfection into fibroblasts. J. biol. Chem. 263, 16291–16296 (1988).

  29. 29

    Linch, D.C., Levinsky, R.J., Rodeck, C.H., Maclennan, K.A. & Simmonds, H.A. Prenatal diagnosis of three casesof severe combined immunodeficiency: severe T cell deficiency during the first half of gestation in fetuses with adenosine deaminase deficiency. Clin. exp. Immunol. 56, 223–232 (1984).

  30. 30

    Fowlkes, B.J. & Pardoll, D.M. Molecular and cellular events in T cell development. Adv. Immunol. 44, 207–264 (1989).

  31. 31

    Ratech, H., Hirschhorn, R. & Thorbecke, G.J. Effects of deoxycoformycin in mice III. A murine model reproducing the multi-system pathology of human adenosine deaminase deficiency. Am. J. Path. 119, 65–72 (1985).

  32. 32

    Tedde, A. et al. Animal model for immune dysfunction associated with adenosine deaminase deficiency. Proc. natn. Acad. Sci. U.S.A. 77, 4899–4903 (1980).

  33. 33

    Hershfield, M.S. et al. S-adenosylhomocysteine hydrolase catabolism and basis for acquired resistance during treatment of T-cell acute lymphoblastic leukemia with 2′-deoxycoformycin alone and in combination with 9-β-D-arabinofuranosyladenine. Cancer Res. 43, 3451–3458 (1983).

  34. 34

    Hershfield, M.S. et al. Conversion of a stem cell leukemia from a T-lymphoid to a myeloid phenotype induced by the adenosine deaminase inhibitor 2′-deoxycoformycin. Proc. natn. Acad. Sci. U.S.A. 81, 253–257 (1984).

  35. 35

    Carson, D.A., Kaye, J. & Wasson, D.B. Differences in deoxyadenosine metabolism in human and mouse lymphocytes. J. Immunol. 124, 8–12 (1980).

  36. 36

    Hershfield, M.S. et al. Effects of mutational loss of adenosine kinase and deoxycytidine kinase on deoxyATP accumulation and deoxyadenosine toxicity in cultured CEM cells. J. biol. Chem. 257, 6380–6386 (1982).

  37. 37

    Ullman, B., Levinson, B.B., Hershfield, M.S. & Martin, D.W.J. A biochemical genetic study of the role of specific nucleoside kinases in deoxyadenosine phosphorylation by cultured human cells. J. biol. Chem. 256, 848–852 (1981).

  38. 38

    Karlsson, A., Johansson, M. & Eriksson, S. Cloning and expression of mouse deoxycytidine kinase; pure recombinant mouse and human enzymes show differences in substrate specificity. J. biol. Chem. (1994).

  39. 39

    Gao, X., Blackburn, M.R. & Knudsen, T.B. Activation of apoptosis in early mouse embryos by 2′-deoxyadenosine exposure. Teratology 49, 1–12 (1994).

  40. 40

    Surh, C.D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994).

  41. 41

    Hirschhorn, R., Roegner, V., Rubinstein, A. & Papageorgiou, P. Plasma deoxyadenosine, adenosine, and erythrocyte deoxyATP are elevated at birth in an adenosine deaminase-deficient child. J. Clin. Invest. 65, 768–771 (1980).

  42. 42

    Olsson, R.A. & Pearson, J.D., 70, 761–845 (1990).

  43. 43

    Bontemps, F., Vincent, M.F. & van den Berghe, G. Mechanisms of elevation of adenosine levels in anoxic hepatocytes. Biochem. J. 290, 671–677 (1993).

  44. 44

    Helland, S. & Ueland, P.M. Effect of 2′-deoxycoformycin infusion on S-adenosylhomocysteine hydrolase and the amount of S-adenosylhomocysteine and related compounds in tissues of mice. Cancer Res. 43, 4142–4147 (1983).

  45. 45

    Wainfan, E. & Poirier, L.A. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 52, 2071s–2077s (1992).

  46. 46

    Miller, M.W. et al. The mouse lethal nonagouti (ax) mutation deletes the S-adenosylhomocysteine hydrolase (Ahcy) gene. EMBO J. 13, 1806–1816 (1994).

  47. 47

    Markert, M.L., Hutton, J.J., Wiginton, D.A., States, J.C. & Kaufman, R.E. Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene promoter and first exon by homologous recombination between two Alu elements. J. Clin. Invest. 81, 1323–1327 (1988).

  48. 48

    Berkvens, T.M., van Ormondt, H., Gerritsen, E.J.A., Meera Khan, P. & van der Eb, A.J. Identical 3250-bp deletion between two Alul repeats in the ADA genes of unrelated ADA-SCID patients. Genomics 7, 486–490 (1990).

  49. 49

    Grosveld, F.G., Lund, T., Mellor, A.L. & Flavell, R.A. The construction of cosmid libraries which can be used to transform eukaryotic cells. Nucl. Acids Res. 10, 6715–6732 (1982).

  50. 50

    te Riele, H., Robanus-Maandag, E., Clarke, A., Hooper, M. & Berns, A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990).

  51. 51

    Hooper, M., Friedmann, M., Reeves, R. & Magnuson, N.S. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germ line colonization by cultured cells. Nature 326, 292–295 (1987).

  52. 52

    Smith, A.G. & Hooper, M.L. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Devl. Biol. 121, 1–9 (1987).

  53. 53

    Abbondanzo, S.J., Gadi, I. & Stewart, C.L. Derivation of embryonic stem cell lines. in Methods in Enzymology, Guide to techniques in mouse development (eds Wassarman, P. M. & De Pamphilis, M.L.) 803–822 (Academic Press, San Diego, 1993).

  54. 54

    Stewart, C.L. Production of chimeras between embryonic stem cells and embryos. in Methods in Enzymology, Guide to techniques in mouse development (eds Wassarman, P. M. & De Pamphilis, M.L) 823–854 (Academic Press, San Diego, 1993).

  55. 55

    Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids Res. 19, 4293–4295 (1991).

  56. 56

    Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982).

  57. 57

    Meera Khan, P. Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in man-mouse and man-chinese hamster somatic cell hybrids. Arch. Biochem. Biophys. 145, 470–483 (1971).

  58. 58

    Buchou, T. et al. Increased cyclin A and decreased cyclin D levels in adenovirus 5 E1A-transformed rodent cell lines. Oncogene. 8, 1765–1773 (1993).

  59. 59

    Arredondo-Vega, F.X. et al. Paradoxical expression of adenosine deaminase in T cells cultured from a patient with adenosine deaminase deficiency and combined immunodeficiency. J. Clin. Invest. 86, 444–452 (1990).

  60. 60

    Hershfield, M.S., Aiyar, V.N., Premakumar, R. & Small, W.C. S-adenosyl homocysteine hydrolase from human placenta. Biochem. J. 230, 43–52 (1985).

  61. 61

    Ossendorp, F. et al. T cell receptor-ab lacking the b-chain V domain can be expressed at the cell surface but prohibits T cell maturation. J. Immunol. 148, 3714–3722 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading