Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minisatellite diversity supports a recent African origin for modern humans

Abstract

In a study of human diversity at a highly variable locus, we have mapped the internal structures of tandem–repetitive alleles from different populations at the minisatellite MS205 (D76S309).The results give an unusually detailed view of the different allelic structures represented on modern human chromosomes, and of the ancestral relationships between them. There was a clear difference in allelic diversity between African and non–African populations. A restricted set of allele families was found in non–African populations, and formed a subset of the much greater diversity seen on African chromosomes. The data strongly support a recent African origin for modern human diversity at this locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cann, R.L., Stoneking, M. & Wilson, A.C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    Article  CAS  Google Scholar 

  2. Templeton, A.R. Human origins and the analysis of mitochondrial DNA sequences. Science 255, 737 (1992).

    Article  CAS  Google Scholar 

  3. Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes. (Princeton University Press, Princeton, 1994).

    Google Scholar 

  4. Wainscoat, J.S. et al. Evolutionary relationship of human populations from an analysis of nuclear DNA polymorphisms. Nature 319, 491–493 (1986).

    Article  CAS  Google Scholar 

  5. Kidd, K.K. & Kidd, J.R. A nuclear perspective of human evolution. in Cambridge Symposium on Molecular Biology and Human Diversity. (ed.Boyce, A.J.) (Cambridge University Press, in the press).

  6. Bowcock, A.M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).

    Article  CAS  Google Scholar 

  7. Edwards, A., Hammond, H.A., Jin, L., Caskey, C.T. & Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 (1992).

    Article  CAS  Google Scholar 

  8. Batzer, M.A. et al. African origin of human-specific polymorphic Alu insertions. Proc. Natl. Acad. Sci. USA 91, 12288–12292 (1994).

    Article  CAS  Google Scholar 

  9. Castiglione, C.M. et al. Evolution of haplotypes at the DRD2 locus. Am. J. Hum. Genet. 57, 1445–1456 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tishkoff, S.A. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387 (1996).

    Article  CAS  Google Scholar 

  11. Templeton, A.R., Routman, E. & Phillips, C.A. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140, 767–782 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeffreys, A.J., Wilson, V. & Thein, S.L. Hypervariable 'minisatellite' regions in human DMA. Nature 314, 67–73 (1985).

    Article  CAS  Google Scholar 

  13. Nakamura, Y. et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 1616–1622 (1987).

    Article  CAS  Google Scholar 

  14. Armour, J.A.L. & Jeffreys, A.J. Biology and applications of human minisatellite loci. Curr. Opin. Genet. Dev. 2, 850–856 (1992).

    Article  CAS  Google Scholar 

  15. Jeffreys, A.J., Royle, N.J., Wilson, V. & Wong, Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332, 278–281 (1988).

    Article  CAS  Google Scholar 

  16. Vergnaud, G. et al. The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11, 135–144 (1991).

    Article  CAS  Google Scholar 

  17. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  Google Scholar 

  18. Jeffreys, A.J., Neumann, R. & Wilson, V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60, 473–485 (1990).

    Article  CAS  Google Scholar 

  19. Jeffreys, A.J., MacLeod, A., Tamaki, K., Neil, D.L. & Monckton, D.G. Minisatellite repeat coding as a digital approach to DNA typing. Nature 354, 204–209 (1991).

    Article  CAS  Google Scholar 

  20. Neil, D.L. & Jeffreys, A.J. Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping. Hum. Mol. Genet. 2, 1129–1135 (1993).

    Article  CAS  Google Scholar 

  21. Armour, J.A.L., Harris, R.C. & Jeffreys, A.J. Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability. Hum. Mol. Genet. 2, 1137–1145 (1993).

    Article  CAS  Google Scholar 

  22. Buard, J. & Vergnaud, G. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). EMBO J. 13, 3203–3210 (1994).

    Article  CAS  Google Scholar 

  23. Armour, J.A.L., Crosier, M. & Jeffreys, A.J. Distribution of tandem repeat polymorphism within minisatellite MS621 (D5S110). Ann. Hum. Genet. 60, 11–20 (1996).

    Article  CAS  Google Scholar 

  24. Royle, N.J., Armour, J.A.L., Webb, M., Thomas, A. & Jeffreys, A.J. A hypervariable locus D16S309 located at the distal end of 16p. Nucl. Acids Res. 20, 1164 (1992).

    Article  CAS  Google Scholar 

  25. Templeton, A.R.R. ‘Eve’: hypothesis compatibility versus hypothesis testing. Am. Anthropol. 96, 141–147 (1994).

    Article  Google Scholar 

  26. Zischler, H., Geisert, H., von Haeseler, A. & PSabo, S. A nuclear ‘fossil’ of the mitochondrial D-loop and the origin of modem humans. Nature 378, 489–492 (1995).

    Article  CAS  Google Scholar 

  27. Monckton, D.G. et al. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nature Genet. 8, 162–170 (1994).

    Article  CAS  Google Scholar 

  28. Sajantila, A. et al. Genes and languages in Europe: an analysis of mitochondrial lineages. Genome Res. 5, 42–52 (1995).

    Article  CAS  Google Scholar 

  29. Flint, J., Boyce, A.J., Martinson, J.J. & Clegg, J.B. Population bottlenecks in Polynesia revealed by minisatellites. Hum. Genet. 83, 257–263 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armour, J., Anttinen, T., May, C. et al. Minisatellite diversity supports a recent African origin for modern humans. Nat Genet 13, 154–160 (1996). https://doi.org/10.1038/ng0696-154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing