Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A subset of p53-deficient embryos exhibit exencephaly

Abstract

Defects in neural tube formation are among the most common malformations leading to infant mortality. Although numerous genetic loci appear to contribute to the defects observed in humans and in animal model systems, few of the genes involved have been characterized at the molecular level. Mice lacking the p53 tumour suppressor gene are predisposed to tumours, but the viability of these animals indicates that p53 function is not essential for embryonic development. Here, we demonstrate that a fraction of p53–deficient embryos in fact do not develop normally. These animals display defects in neural tube closure resulting in an overgrowth of neural tissue in the region of the mid–brain, a condition known as exencephaly.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Harris, C.C. & Hollstein, M. Clinical implications of the p53 tumour-suppressor gene. New Engl. J. Med. 329, 1318–1327 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DMA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  3. Kastan, M. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Lowe, S.W., Schmitt, E.S., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D.E., Housman, D.E. p53-dependent apoptosis modulates the cytoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Lowe, S.W., Jacks, T., Housman, D.E. & Ruley, H.E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. natn. Acad. Sci. U.S.A. 91, 2026–2030 (1994).

    Article  CAS  Google Scholar 

  8. Shaw, P. et al. Induction of apoptosis by wild-type p53 in a human colon tumour-derived cell line. Proc. natn. Acad. Sci. U.S.A. 89, 4495–4499 (1992).

    Article  CAS  Google Scholar 

  9. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes and Dev. 7, 546–554 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Symonds, H. et al. p53-dependent apoptosis suppresses tumour growth and progression In vivo. Cell 78, 703–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Jacks, T. et al. Tumour spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Purdie, C.A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9, 603–609 (1994).

    CAS  PubMed  Google Scholar 

  15. Tsukada, T. et al. Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8, 3313–3322 (1993).

    CAS  PubMed  Google Scholar 

  16. Neumann, P.E. et al. Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice. Nature Genet. 6, 357–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Copp, A.J., Brook, F.A., Estibeiro, J.P., Shum, A.S.W. & Cockroft, D.L. The embryonic development of mammalian neural tube defects. Prog. Neurobiology 35, 363–403 (1990).

    Article  CAS  Google Scholar 

  18. Campbell, L.R., Datton, D.H. and Sohal, G.S. Neural tube defects: a review of human and animal studies on the etiology of neural tube defects. Teratology 34, 171–187 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Gruneberg, H. Genetical studies on the skeleton of the mouse VII. Curly tail. J. Genet. 52, 52–67 (1954).

    Article  Google Scholar 

  20. Copp, A.J., Brook, F.A. & Roberts, H.J. A cell-type-specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104, 285–295 (1988).

    CAS  PubMed  Google Scholar 

  21. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Jacks, T. et al. Tumourigenic and developmental consequences of a targeted Nf1 mutation in the mouse. Nature Genet. 7, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Page, D.C. et al. The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51, 1091–1104 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. McKay, I.J. et al. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120, 2199–2211 (1994).

    CAS  PubMed  Google Scholar 

  25. Rotter, V. et al. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc. natn. Acad. Sci. U.S.A. 90, 9075–9079 (1993).

    Article  CAS  Google Scholar 

  26. Rogel, A., Popliker, M., Webb, C.G. & Oren, M. p53 cellular tumour antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumours. Molec. cell. Biol. 5, 2851–2855 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmid, P., Lorenz, A., Hameister, H. & Montenarh, M. Expression of p53 during mouse embryogenesis. Development 113, 857–865 (1991).

    CAS  PubMed  Google Scholar 

  28. Lee, E.Y. Y.-H.P.et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–295 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Clarke, A.R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Kreidberg, J.A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Brannan, C.I. et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019–1029 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Copp, A.J. Neural tube defects. Trends Neurosci. 16, 381–383 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Macdonald, K.B., Juriloff, D.M. & Harris, M.J. Developmental study of neural tube closure in a mouse stock with a high incidence of exencephaly. Teratology 39, 195–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Oliner, J.D. Discerning the function of p53 by examining its molecular interactions. BioEssays 15, 703–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Macleod, K. et al. p53-Dependent and independent expression of p21 during cell growth, differentiation and DNA-damage. Genes Dev. (in the press).

  36. Epstein, D.J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homoedomain of Pax-3. Cell 67, 767–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Hui, C. & Joyner, A.L. A mouse model of Greig cephalopolysyndactyly: the extra-toes mutation contains an intragenic deletion of the Gli3 gene. Nature Genet. 3, 241–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. cell. Biol. 119, 493–501 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sah, V., Attardi, L., Mulligan, G. et al. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10, 175–180 (1995). https://doi.org/10.1038/ng0695-175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing