Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • New Technology
  • Published:

Computer-based three-dimensional visualization of developmental gene expression

Abstract

A broad understanding of the relationship between gene activation, pattern formation and morphogenesis will require adequate tools for three-dimensional and, perhaps four-dimensional, representation and analysis of molecular developmental processes. We present a novel, computer-based method for the 3D visualization of embryonic gene expression and morphological structures from serial sections. The information from these automatically aligned 3D reconstructions exceeds that from single-section and whole-mount visualizations of in situ hybridizations. In addition, these 3D models of gene-expression patterns can become a central component of a future developmental database designed for the collection and presentation of digitized, morphological and gene-expression data. This work is accompanied by a web site (http://www.univie.ac.at/GeneEMAC).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the 3D-reconstruction concept.
Figure 2: 3D models of embryonic structures and gene expression patterns, demonstrating reconstructions from three different structural levels.
Figure 3: Precision of the congruencing of sections.
Figure 4: Stereo-images of Myf5 expression in the rostral thorax and forelimb anlagen of a TS18 mouse embryo (148 sections cut at 7 μm; total specimen size, 1.036 mm).
Figure 5: Schematic organization chart for a 3D gene-expression database.

References

  1. Ringwald, M. et al. A database for mouse development. Science 265, 2033–2034 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Roush, W. A womb with a view. Science 278, 1397–1399 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. His, W. Ueber die Methoden der plastischen Rekonstruktion und über deren Bedeutung für Anatomie und Entwicklungsgeschichte. Anat. Anz. II, 382–392 (1887).

    Google Scholar 

  4. Born, G. Die Plattenmodelliermethode. Archiv f. mikroskop. Anatomie 22, 584–599 (1883).

    Article  Google Scholar 

  5. Sjöstrand, R.F. Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by 3-D reconstructions from serial sections. J. Ultrastruct. Res. 2, 122–170 (1958).

    Article  PubMed  Google Scholar 

  6. Arnolds, W.J.A. Oriented embedding of small objects in agar-paraffin, with reference marks for serial section reconstruction. Stain Technol. 53, 287–288 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Mitchie, A. & Aggerwal, J.K. Contour registration by shape specific points for shape matching. Comput. Graph. Image Processing 22, 296–308 (1983).

    Google Scholar 

  8. Prothero, J.S. & Prothero, J.W. Three-dimensional reconstruction from serial sections. IV. The reassembly problem. Comput. Biomed. Res. 19, 361–373 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Huijsmans, D.P., Lamers, W.H., Los, J.A. & Strackee, J. Toward computerized morphometric facilities: a review of 58 software packages for computer-aided three-dimensional reconstruction, quantification, and picture generation from parallel serial sections. Anat. Rec. 216, 449–470 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Braverman, M.S. & Braverman, I.M. Three-dimensional reconstruction of objects from serial sections using a microcomputer graphics system. J. Invest. Dermatol. 86, 290–294 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Hibbard, L.S. & Hawkins, R.A. Objective image alignment for three-dimensional reconstruction of digital autoradiograms. J. Neurosci. Meth. 26, 55–74 (1988).

    Article  CAS  Google Scholar 

  12. Brändle, K. A new method for aligning histological serial sections for three-dimensional reconstruction. Comput. Biomed. Res. 22, 52–62 (1989).

    Article  PubMed  Google Scholar 

  13. Moss, V.A., Jenkinson, D., McEwan, P. & Elder, H.Y. Automated image segmentation and serial section reconstruction in microscopy. J. Microsc. 158, 187–196 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Keri, C. & Ahnelt, P.K. A low cost computer aided design (CAD) system for 3D-reconstruction from serial sections. J. Neurosci. Methods 37, 241–250 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Rydmark, M., Jansson, T., Berthold, C.-H. & Gustavsson, T. Computer-assisted realignment of light micrograph images from consecutive section series of cat cerebral cortex. J. Microsc. 165, 29–47 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Arraez Aybar, L.A., Merida Velasco, J.R., Rodriguez Vazquez, J. & Jimenez Collado, J. A computerised technique for morphometry and 3D reconstruction of embryological structures. Surg. Radiol. Anat. 16, 419–422 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Verbeek, F.J., Huijsmans, D.P., Baeten, R.J., Schoutsen, N.J. & Lamers, W.H. Design and implementation of a database and program for 3D reconstruction from serial sections: a data-driven approach. Microsc. Res. Tech. 30, 496–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Skoglund, T.S., Pascher, R. & Berthold, C.H. A method for 3D reconstruction of neuronal processes using semithin serial sections displayed as a cinematographic sequence. J. Neurosci. Methods 61, 105–111 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Streicher, J., Weninger, W.J. & Müller, G.B. External marker based automatic congruencing: a new method of 3D-reconstruction from serial sections. Anat. Rec. 248, 583–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Scarborough, J., Aiton, J.F., McLachlan, J.C., Smart, S.D. & Whiten, S.C. The study of early human embryos using interactive 3-dimensional computer reconstructions. J. Anat. 191, 117–122 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vazquez, M.D. et al. 3D reconstruction of the mouse's mesonephros. Anat. Histol. Embryol. 27, 283–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, B.R. Visualizing human embryos. Sci. Am. 280, 76–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Candia, A.L. et al. Mox-1 and Mox-2 define a novel homeobox subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116, 1123–1136 (1992).

    CAS  PubMed  Google Scholar 

  24. Theiler, K. The House Mouse 1–168 (Springer, Berlin, 1972).

    Google Scholar 

  25. Ott, M.O., Bober, E., Lyons, G., Arnold, H. & Buckingham, M. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111, 1097–1107 (1991).

    CAS  PubMed  Google Scholar 

  26. Anderson, D.J. & Axel, R. Molecular probes for the development and plasticity of neural crest derivatives. Cell 42, 649–662 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Stein, R., Mori, N., Matthews, K., Lo, L.C. & Anderson, D.J. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463–476 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Wright, D.E., White, F.A., Gerfen, R.W., Silos Santiago, I. & Snider, W.D. The guidance molecule semaphorin III is expressed in regions of spinal cord and periphery avoided by growing sensory axons. J. Comp. Neurol. 361, 321–333 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Tajbakhsh, S. & Spörle, R. Somite development: constructing the vertebrate body. Cell 92, 9–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Sporle, R., Gunther, T., Struwe, M. & Schughart, K. Severe defects in the formation of epaxial musculature in open brain (opb) mutant mouse embryos. Development 122, 79–86 (1996).

    CAS  PubMed  Google Scholar 

  31. Hosono, M. et al. Three-dimensional display of cardiac structures using reconstructed magnetic resonance imaging. J. Digit. Imaging 8, 105–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Iwamoto, Y., Oda, Y., Tsumura, H., Doi, T. & Sugioka, Y. Three-dimensional MRI reconstructions of musculoskeletal tumors. A preliminary evaluation of 2 cases. Acta Orthop. Scand. 66, 80–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Krams, R. et al. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17, 2061–2065 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Seidler, H. et al. A comparative study of stereolithographically modelled skulls of Petralona and Broken Hill: implications for future studies of middle Pleistocene hominid evolution. J. Hum. Evol. 33, 691–703 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Stevens, J.K., Mills, L.R. & Trogadis, J.E. Three-Dimensional Confocal Microscopy: Volume Investigation Of Biological Specimens (Academic, San Diego, 1994).

    Google Scholar 

  36. Müller, G.B. & Wagner, G.P. Homology, Hox genes, and developmental integration. Am. Zool. 36, 4–13 (1996).

    Article  Google Scholar 

  37. Holland, L.Z., Holland, P.W. & Holland, N.D. Revealing homologies between body parts of distantly related animals by in situ hybridization to developmental genes: Amphioxus versus vertebrates. in Molecular Zoology (eds Ferraris, J.D. & Palumbi, S.R.) 267–295 (Wiley-Liss, New York, 1996).

  38. Sporle, R. & Schughart, K. Paradox segmentation along inter- and intrasomitic borderlines is followed by dysmorphology of the axial skeleton in the open brain (opb) mouse mutant. Dev. Genet. 22, 359–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Knox, C.K. & Wenstrom, J.C. 3D visualization of neural structures. Proc. Eastern Multiconference Soc. Computer Simulation 12–17 (1990).

  40. Sporle, R. & Schughart, K. System to identify individual somites and their derivatives in the developing mouse embryo. Dev. Dyn. 210, 216–266 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Streicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streicher, J., Donat, M., Strauss, B. et al. Computer-based three-dimensional visualization of developmental gene expression. Nat Genet 25, 147–152 (2000). https://doi.org/10.1038/75989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing