Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus–mediated transfer of the VLDL receptor gene

An Erratum to this article was published on 01 July 1996

Abstract

Liver directed gene transfer with adenoviral vectors is being considered for the treatment of several metabolic diseases, including familial hypercholesterolaemia (FH). Gene replacement therapy of human low density lipoprotein (LDL) receptor gene into the murine model of FH transiently corrected the dyslipidaemia; however, humoral and cellular immune responses to LDL receptor developed — possibly contributing to the associated hepatitis and extinguishing of transgene expression. We evaluated an alternative strategy of ectopic expression in the liver of the very low density lipoprotein (VLDL) receptor, which is homologous to the LDL receptor but has a different pattern of expression. Infusion of recombinant adenoviruses containing the VLDL receptor gene corrected the dyslipidaemia in the FH mouse and circumvented immune responses to the transgene leading to a more prolonged metabolic correction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldstein, J.L., Hobbs, H.H. & Brown, M.S. Familial hypercholesterolemia. in The Metabolic Basis of Inherited Disease(eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 1981–2030 (McGraw-Hill, New York, 1995).

    Google Scholar 

  2. Chowdhury, J. et al. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR deficient rabbits. Science 254, 1802–1805 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Grossman, M., Raper, S. & Wilson, J. Transplantation of genetically-modified autologus hepatocytes into nonhuman primates: feasibility and short-term toxicity. Hum. Gene Ther. 3, 501–510 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Grossman, M. et al. Successful Ex Vivo Gene Therapy Directed to Liver Patient with Familial Hypercholesterolemia. Nature Genet. 6, 335–341 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Grossman, M. et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nature Med. 1148–1154 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Kozarsky, K. et al. In vivo correction of LDL receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J. Biol. Chem. 269, 13695–13702 (1994).

    CAS  PubMed  Google Scholar 

  7. Li, J. et al. In vivo gene therapy for hyperlipidemia: phenotypic correction in Watanabe rabbits by hepatic delivery of the rabbit LDL receptor gene. J. Clin. Invest. 95, 768–773 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barr, D. et al. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains. Gene. Therapy 2, 151–155 (1995).

    CAS  PubMed  Google Scholar 

  11. Yang, Y., Li, Q., Ertl, H. & Wilson, J. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Engelhardt, J., Litzky, L. & Wilson, J. Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective in E2a. Hum. Gene Therapy 5, 1217–1229 (1994).

    Article  CAS  Google Scholar 

  13. Yang, Y., Ertl, H. & Wilson, J. MHC class 1 restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1 deleted recombinant adenoviruses. Immunity 1, 433–442 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, S., Kawarabayasi, Y., Nakai, T., Sakai, J. & Yamamoto, T. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc. Natl. Acad. Sci. USA 89, 9252–9256 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gafvels, M.E. et al. Cloning of a cDNA encoding a putative human very low density lipoprotein/apolipoprotein E receptor and assignment of the gene to chromosome 9pter–p23. Som. Cell Mol. Genet. 19, 557–569 (1993).

    Article  CAS  Google Scholar 

  16. Gafvels, M.E. et al. Cloning of a complementary deoxyribonucleic acid encoding the murine homolog of the very low density lipoprotein/ apolipoprotein-E receptor: expression pattern and assignment of the gene to mouse chromosome 19. Endocrinol. 135, 387–394 (1994).

    Article  CAS  Google Scholar 

  17. Oka, K. et al. Mouse very-low-density-lipoprotein receptor (VLDLR) cDNA cloning, tissue-specific expression and evolutionary relationship with the low-density-lipoprotein receptor. J. Biochem. 224, 975, 982 (1994).

    Google Scholar 

  18. Frykman, P., Brown, M., Yamamoto, T., Goldstein, J. & Herz, J. Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 92, 8453–8457 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto, T., Takahashi, S., Sakai, J. & Kawarabayasi, Y. The very low density lipoprotein receptor, a seond lipoprotein receptor that may mediate uptake of fatty acids into muscle and fat cells. Trends Cardiovasc. Med. 3, 144–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Kass-Eisler, A. et al. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Tnerapy 1, 395–402 (1994).

    CAS  Google Scholar 

  21. Dai, Y. et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc. Natl. Acad. Sci. USA 92, 1401–1405 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Battey, F. et al. The 39-kDa receptor-associated protein regulates ligand binding by the very low density lipoprotein receptor. J. Biol. Chem. 269, 23268–23273 (1994).

    CAS  PubMed  Google Scholar 

  23. Van Ginkel, F. et al. Intratracheal gene delivery with adenoviral vector induces elevated systemic IgG and mucosal IgA antibodies to adenovirus and β-galactosidase. Hum. Gene Therapy 6, 895–903 (1995).

    Article  CAS  Google Scholar 

  24. Yang, Y., Jooss, K.U., Su, Q., Ertl, H.C.J. & Wilson, J.M. Immune responses to viral antigens vs. transgene product in the elimination of recombinant adenovirus infected hepatocytesin vivo. Gene Therapy(in the press).

  25. Jokinen, E.V. et al. Regulation of the very low density lipoprotein receptor by thyroid hormone in rat skeletal muscle. J. Biol. Chem. 269, 26411–26418 (1994).

    CAS  PubMed  Google Scholar 

  26. Willnow, T. & Herz, J. Animal models for disorders of hepatic lipoprotein metabolism. J. Mol. Med. 73, 213–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Shimano, H. et al. Secretion-recapture process of apolipoprotein E in hepatic uptake of chylomicron remnants in transgenic mice. J. Clin. Invest. 93, 2215–2223 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mokuno, H., Brady, S., Kotite, L., Herz, J. & Havel, R. Effect of the 39-kDa receptor-associated protein on the hepatic uptake and endocytosis of chylomicron remnants and low density lipoproteins in the rat. J. Biol. Chem. 269, 13238–13243 (1994).

    CAS  PubMed  Google Scholar 

  29. Bu, G., Geuze, H., Strous, G. & Schwartz, A. 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J. 14, 2269–2280 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Polvino, W.J., Dichek, D.A., Mason, J. & Anderson, W.F. Molecular cloning and nucleotide sequence of cDNA encoding a functional murine low-density-lipoprotein receptor. Somat. Cell Mol. Genet. 18, 443–450 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Hoffer, M.J.V. et al. The mouse low density lipoprotein receptor gene: cDNA sequence and exon–intron structure. Biochem. Biophys. Res. Comm. 191, 880–886 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Kozarsky, K., Grossman, M. & Wilson, J. Adenovirus-mediated correction of the genetic defect in hepatocytes from patients with familial hypercholesterolemia. Somat. Cell Molec. Genet. 19, 449–458 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Engelhardt, J. et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1 -deleted adenoviruses. Nature Genet. 4, 27–34 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto, T. et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39, 27–38 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Chakrabarti, S., Brechling, K. & Moss, B. Moss, B. vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 5, 3403–3409 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wiktor, T. et al. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. USA 81, 7194–7198 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozarsky, K., Jooss, K., Donahee, M. et al. Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus–mediated transfer of the VLDL receptor gene. Nat Genet 13, 54–62 (1996). https://doi.org/10.1038/ng0596-54

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0596-54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing