Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A

Abstract

Haemophilia A is a classic X-linked disease which affects 1 in 5–10,000 males in all populations1 and is caused by defects in coagulation factor VIII2,3. Roughly 60% of patients have severe disease with factor VIII activity <1% of normal; they have frequent spontaneous bleeding into joints, soft tissues, muscles and internal organs. These patients usually require regular injections of plasma-derived or recombinant human factor VIII. Because this is expensive and can potentially lead to life-threatening complications, other forms of therapy, includinggene therapy, have been proposed2. Natural canine models of factor VIII and factor IX deficiency have been available for many years4–5, and gene therapy attempts on these dogs have met with partial success6–8. However, a small animal model of the disease is desirable for studies of factor VIII function and gene therapy. Using gene targeting, we have made a mouse with severe factorVIII deficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rizza, C.R. & Spooner, R.J.D. Treatment of haemophilia and related disorders in Britain and Northern Ireland during 1976–1980: Report on behalf of the Directors of Haemophilia Centres in the United Kingdom. Br. med. J. 286, 391–402 (1983).

    Article  Google Scholar 

  2. Sadler, J.E. & Davie, E.W. Haemophilia A, haemophilia B and von Willebrand's disease. in The Molecular Basis of Blood Disease. (eds Stamatoyanopoulos, G. et al.) 575–630 (W.B. Saunders, Philadelphia, 1987).

    Google Scholar 

  3. Kazazian, H.H. Jr., Tuddenham, E.G.D. & Antonarakis, S.E. Haemophilia A and parahaemophilia: deficiencies of factors VIII and V. in Medical and Metabolic Basis of Inherited Disease, 7th edn (eds Scriver, C. et al.) 3241–3267 (McGraw-Hill, New York, 1995).

    Google Scholar 

  4. Graham, J.B. & Brinkhous, K.M. Canine and equine haemophillia, in Hand book of Haemophilia (eds Graham, J.B. et.al) (Elsevier, New York, 1975).

    Google Scholar 

  5. Evans, J.P. et al. Canine haemophilia B resulting from a point mutation with unusual consequences. Proc. natn. Acad. Sci. U.S.A. 86, 10095–10099 (1989).

    Article  CAS  Google Scholar 

  6. St Louis, D. & Verma, I.M. An alternative approach to somatic gene therapy. Proc. natn. Acad. Sci. U.S.A. 85, 3150–3154 (1988).

    Article  CAS  Google Scholar 

  7. Kay, M.A. et al. In vivo gene therapy of haemophilia B: Sustained partial correction in factor IX-deficient dogs. Science 262, 117–119 (1993).

    Article  CAS  Google Scholar 

  8. Kay, M.A. et al. in vivo hepatic gene therapy: Complete albiet transient correction of factor IX deficiency in haemophilia B dogs. Proc. natn. Acad. Sci. U.S.A. 91, 2353–2357 (1994).

    Article  CAS  Google Scholar 

  9. Gitschier, J. et al. Characterization of the human factor VIII gene. Nature 312, 326–330 (1984).

    Article  CAS  Google Scholar 

  10. Wood, W.I. et al. Expression of active human factor VIII from recombinant DNA clones. Nature 312, 330–337 (1984).

    Article  CAS  Google Scholar 

  11. Vehar, G.A. et al. Structure of human factor VIII. Nature 312, 337–342 (1984).

    Article  CAS  Google Scholar 

  12. Toole, J.J. et al. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312, 342–347 (1984).

    Article  CAS  Google Scholar 

  13. Wion, K.L. et al. Distribution of factor VIII: mRNA and antigen in human liver and other tissues. Nature 317, 726–728, (1985).

    Article  CAS  Google Scholar 

  14. Lakich, D., Kazazian, H.H. Jr, Antonarakis, S.E. & Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nature Genet. 5, 236–241 (1993).

    Article  CAS  Google Scholar 

  15. Naylor, J.A., Brinke, A., Hassock, S., Green, P.M. & Giannelli, F. Characteristic mRNA abnormality found in half the patients with severe haemophilia A is due to large gene inversions. Hum. molec. Genet. 2, 1773–1778 (1993).

    Article  CAS  Google Scholar 

  16. Rossiter, J.P. et al. Factor VIII gene inversions causing severe haemophilia A originate almost exclusively in male germ cells. Hum. molec. Genet. 3, 1035–1039, (1994).

    Article  CAS  Google Scholar 

  17. Antonarakis, S.E., Kazazian, H.H. Jr. & Tuddenham, E.G.D. Molecular etiology of factor VIII deficiency in haemophilia A. Hum. Mut. 5, 1–22 (1995).

    Article  CAS  Google Scholar 

  18. Hoyer, L.W. & Scandella, D. Factor VIII inhibitors: Structure and function in autoantibody and haemophilia A patients. Sem. hematol. 31, 1–5 (1994).

    CAS  Google Scholar 

  19. Aledort, L. Inhibitors in haemophilia patients: Current status and management. Am. j. Hematol. 47, 208–217 (1994).

    Article  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning, a laboratory manual. 2nd edn (Cold Spring Harbor Laboratory Press, 1989).

  21. Deng, W.P. & Nickoloff, J.A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200, 81–89 (1992).

    Article  CAS  Google Scholar 

  22. Wassarman, P.M. & DePamphilis, M.L. Guide to techniques in mouse development. Meth. Enzymol. 225, 803–879 (1993).

    Article  Google Scholar 

  23. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

  24. Rosen, S. et al. Clinical application of a chromogenic substrate method for determination of factor VIII activity. Thomb. Haem. 54, 818–823 (1985).

    CAS  Google Scholar 

  25. Proctor, R.R. & Rapaport, S.I. The partial thromboplastin time with kaolin: Simple screening test for first stage plasma factor deficiencies. Am. J. Clin. Pathol. 36, 212–218 (1961).

    Article  CAS  Google Scholar 

  26. Elder, B., Lakich, D. & Gitschier, J. Sequence of the murine factor VIII cDNA. Genomics 16, 374–379 (1993).

    Article  CAS  Google Scholar 

  27. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  28. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, L., Lawler, A., Antonarakis, S. et al. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 10, 119–121 (1995). https://doi.org/10.1038/ng0595-119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0595-119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing