Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental changes in methylation of spermatogenesis–specific genes include reprogramming in the epididymis

Abstract

We have determined the status of DNA methylation at specific sites in three spermatogenesis–specific genes, Pgk–2, ApoA1 and Oct–3/4, throughout the development and differentiation of male germ cells in the mouse. We observed a specific demethylation event in the Pgk–2 gene in prospermatogonia at about the time of birth, about 10 days before the onset of transcription which first occurs in primary spermatocytes. All three genes were unmethylated in adult spermatogenic cells in the testis, but were remethylated in mature spermatozoa in the vas deferens. Surprisingly, we found that this remethylation is part of the process of sperm maturation which occurs in the epididymis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cedar, H. DNA methylation and gene activity. Cell 53, 3–4 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Devel. 6, 705–714 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. McCarrey, J.R. Development of the germ cell. In Cellular and Molecular Biology of the Testis. (eds L. Ewing & C. Desjardins) 58–89 (Oxford University Press, New York, 1993).

    Google Scholar 

  4. Ariel, M., McCarrey, J. & Cedar, H. Methylation patterns of testis-specific genes. Proc. natn. Acad. Sci. U.S.A. 88, 2317–2321 (1991).

    Article  CAS  Google Scholar 

  5. McCarrey, J.R. et al. Differential transcription of Pgk genes during spermatogenesis in the mouse. Develop. Biol. 153, 160–168 (1992).

    Article  Google Scholar 

  6. Monesi, V. Ribonucleic acid and protein synthesis during differentiation of male germ cells in the mouse. Archs Anat. microsc. morph. Exp. 56 (suppl. 3/4), 61–74 (1967).

    CAS  Google Scholar 

  7. Singer-Sam, J., LeBon, J.M., Tanguay, R.L. & Riggs, A.D. A quantitative Hpall-PCR assay to measure methylation of DNA from a small number of cells. Nucl. Acids Res. 18, 687–692 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benoit, J. Recherches anatomiques, cytologiques et histophyslologiques sur les voles excretrices du testicule chez les mammif ores. Arch. Anat. Histol. Embryol. (Strasb). 5, 175–412 (1926).

    Google Scholar 

  9. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  10. Sanford, J., Forrester, L., Chapman, V., Chandley, A. & Hastie, N. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus. Nucl. Acids Res. 12, 2823–2836 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gebara, M.M. & McCarrey, J.R. Protein-DNA interactions associated with the onset of testis-specific expression of the mammalian Pgk-2 gene. Molec. cell. Biol. 12, 1422–1431 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robaire, B. & Hermo, L. in The Physiology of Reproduction (eds Knobil, E. et al.) 999–1080 (Raven, New York, 1988).

    Google Scholar 

  13. Orgebin-Crist, M.-C. & Olson, G.E. Epididymal sperm maturation. in The Male in Farm Animal Reproduction (ed. Courot, M.) 80–102 (Martinus Nijhoff, Amsterdam, 1984).

    Google Scholar 

  14. Hamilton, D.W. in Frontiers in Reproduction and Fertililty Control Part 2 (eds Greep, R.O. & Koblinsky. M.A.) 411–426 (MIT, Cambridge, 1977).

    Google Scholar 

  15. Bedford, J.M. in Handbook of Physiology. Sect. 7, Bol. V (eds Hamilton, D.W. & Greep, R.O.) 303 (American Physiological Soc. Washington D.C, 1975).

    Google Scholar 

  16. Shemer, R., Walsh, A., Eisenberg, S., Breslow, J.L. & Razin, A. Tissue specific expression and methylation of the human apolipoprotein A1 gene. J. biol. Chem. 265, 1010–1015 (1990).

    CAS  PubMed  Google Scholar 

  17. Walsh, A., Ito, Y. & Breslow, J.L. High levels of human apolipoprotein A-1 in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3 . J. biol. Chem. 264, 6488–6494 (1989).

    CAS  PubMed  Google Scholar 

  18. Rosner, M.H. et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. DeChiara, T.M., Robertson, E.J. & Efstradiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Barlow, D.P., Stoger, R., Herrmann, B.G., Saito, K. & Schweifer The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Chaillet, J.R., Vogt, T.F., Beier, D.R. & Leder, P. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66, 77–83 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Brandeis, M. et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCarrey, J.R., Hsu, K.C., Eddy, E.M., Klevecz, R.R. & Bolen, J.L. Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. exp. Zool. 242, 107–111 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Hahnel, A.C. & Eddy, E.M. Cell surface markers of mouse primordial germ cells defined by two monoclonal antibodies. Gamete Res. 15, 25–34 (1986).

    Article  Google Scholar 

  28. Bellve, A.R. et al. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74, 68–85 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Romrell, L.J., Bellve, A.R. & Fawcett, D.W. Separation of mouse spermatogenic cells by sedimentation velocity. Devl. Biol. 49, 119–131 (1976).

    Article  CAS  Google Scholar 

  30. Ben-Shushan, E., Pikarshy, E., Klar, A. & Bergman, Y. Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast cell hybrid is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Molec. cell. Biol. 13, 891–901 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okazawa, H. et al. The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. EMBO J. 10, 2997–3005 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariel, M., Cedar, H. & McCarrey, J. Developmental changes in methylation of spermatogenesis–specific genes include reprogramming in the epididymis. Nat Genet 7, 59–63 (1994). https://doi.org/10.1038/ng0594-59

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0594-59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing