Letter | Published:

Mutations in KERA, encoding keratocan, cause cornea plana

Nature Geneticsvolume 25pages9195 (2000) | Download Citation

Subjects

Abstract

Specialized collagens and small leucine-rich proteoglycans (SLRPs) interact to produce the transparent corneal structure1. In cornea plana, the forward convex curvature is flattened, leading to a decrease in refraction2. A more severe, recessively inherited form (CNA2; MIM 217300) and a milder, dominantly inherited form (CNA1; MIM 121400) exist. CNA2 is a rare disorder with a worldwide distribution, but a high prevalence in the Finnish population3. The gene mutated in CNA2 was assigned by linkage analysis to 12q (refs 4,5), where there is a cluster of several SLRP genes6,7,8,9. We cloned two additional SLRP genes highly expressed in cornea: KERA (encoding keratocan) in 12q and OGN (encoding osteoglycin) in 9q. Here we report mutations in KERA in 47 CNA2 patients: 46 Finnish patients are homozygous for a founder missense mutation, leading to the substitution of a highly conserved amino acid; and one American patient is homozygous for a mutation leading to a premature stop codon that truncates the KERA protein. Our data establish that mutations in KERA cause CNA2. CNA1 patients had no mutations in these proteoglycan genes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Tralstad, R.L., Hayashi, K. & Toole, B.P. Epithelial collagens and glycosaminoglycans in the embryonic cornea. J. Cell. Biol. 62, 815–830 (1974).

  2. 2

    Wilson, F.M. II . Congenital anomalies of the cornea and conjunctiva. in The Cornea (eds Smolin, G. & Thoft, R.A.) 539–540 (Little, Brown, Boston, 1994).

  3. 3

    Eriksson, A.W., Lehmann, W. & Forsius, H. Congenital cornea plana in Finland. Clin. Genet. 4, 301–310 (1973).

  4. 4

    Tahvanainen, E. et al. Cornea plana congenita gene assigned to the long arm of chromosome 12 by linkage analysis. Genomics 26, 290–293 (1995).

  5. 5

    Tahvanainen, E. et al. Linkage disequilibrium mapping of the cornea plana congenita gene CNA2. Genomics 30, 409–414 (1995).

  6. 6

    Danielson, K.G. et al. The human decorin gene: intron-exon organization, discovery of two alternatively spliced exons in the 5′ untranslated region, and mapping of the gene to chromosome 12q23. Genomics 15, 146–160 (1993).

  7. 7

    Vetter, U., Vogel, W., Just, W., Young, M.F. & Fisher, L.W. Human decorin gene; intron-exon junctions and chromosomal localization. Genomics 15, 161–168 (1993).

  8. 8

    Grover, J., Chen, X.-N., Korenberg, J.R. & Roughley, P.J. The human lumican gene. Organization, chromosomal location and expression in articular cartilage. J. Biol. Chem. 270, 21942–21949 (1995).

  9. 9

    Deere, M. et al. Characterization of human DSPG3, a small dermatan sulfate proteoglycan. Genomics 38, 399–404 (1996).

  10. 10

    Tahvanainen, E., Sigler-Villanueva, A., Forsius, H., Salo, P. & de la Chapelle, A. Dominantly and recessively inherited cornea plana congenita map to the same small region of chromosome 12. Genome Res. 6, 249–254 (1996).

  11. 11

    Tahvanainen, E. et al. The genetics of cornea plana congenita. J. Med. Genet. 33, 116–119 (1996).

  12. 12

    Corpuz, L.M. et al. Molecular cloning and tissue distribution of keratocan. J. Biol. Chem. 271, 9759–9763 (1996).

  13. 13

    Liu C.-Y. et al. The cloning of the mouse keratocan cDNA and genomic DNA and the characterization of its expression during eye development. J. Biol. Chem. 273, 22584–22588 (1998).

  14. 14

    Hocking, A.M., Shinomure, T. & McQuillan, D. Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol. 17, 1–19 (1998).

  15. 15

    Forsius, H. et al. Autosomal recessive cornea plana. A clinical and genetic study of 78 cases in Finland. Acta Ophthalmol. Scand. 76, 196–203 (1998).

  16. 16

    Funderburgh, J.L. et al. Mimecan, the 25 kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J. Biol. Chem. 272, 28089–28095 (1997).

  17. 17

    Spencer, W.H. Cornea. in Ophthalmic Pathology (ed. Spencer, W.H.) 159–177 (W.B. Saunders Company, Philadelphia, 1996).

  18. 18

    Griffith, M. et al. Functional human corneal equivalents constructed from cell lines. Science 286, 2169–2172 (1999).

  19. 19

    Sigler-Villanueva, A., Tahvanainen, E., Lindh, S., Dieguez-Lucena, J. & Forsius, H. Autosomal dominant cornea plana: clinical findings in a Cuban family and a review of the literature. Ophthalmic Genet. 18, 55–62 (1997).

  20. 20

    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

  21. 21

    Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor neural network approach. Proc. Natl Acad. Sci. USA 88, 11261–11265 (1992).

  22. 22

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22, 4673–4680 (1994).

  23. 23

    Deere, M. et al. Genomic characterization of human DSPG3. Genome Res. 9, 449–456 (1999).

  24. 24

    Liechti-Gallati, S., Schneider, V., Neeser, D. & Kraemer, R. Two buffer PAGE system-based SSCP/HD analysis: a general protocol for rapid and sensitive mutation screening in cystic fibrosis and any other human genetic disease. Eur. J. Hum. Genet. 7, 590–598 (1999).

  25. 25

    Miano, J.M., Garcia, E. & Krahe, R. High resolution radiation hybrid (RH) mapping of human smooth muscle-restricted genes. in Molecular Biology of Vascular Diseases, Methods in Molecular Medicine Series (ed. Baker, A.H.) 25–35 (Humana Press, Tetowa, 1999).

  26. 26

    Tasheva, E.S., Funderburgh, J.L., Funderburgh, M.L., Corpuz, L.M. & conrad, G.W. Structure and sequence of the gene encoding human keratocan DNA Seq. 10, 67–74 (1999).

Download references

Acknowledgements

We thank the patients and their families for cooperation; R. Chadwick, C. Johnson and B. Yuan for sequencing and data assembly assistance; Y. Huang and J. Lockman for technical assistance; I. Maumenee, J. Hecht, A. Sigler-Villanueva and E.-M. Sankila for providing materials; and P. Kaumaya, K. Mrozek, S. Tanner and P. Peltomäki for helpful discussions. N.S.P. was supported in part by a fellowship from the ACSBI-UICC. This work was supported by grants from the National Institutes of Health (NG1763 and P30 CA16058) and the Academy of Finland.

Author information

Affiliations

  1. Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA

    • Natalia S. Pellegata
    • , Ralf Krahe
    •  & Albert de la Chapelle
  2. Folkhälsan Institute of Genetics, Helsinki, Finland

    • Jose L. Dieguez-Lucena
    • , Tarja Joensuu
    • , Henrik Forsius
    •  & Albert de la Chapelle
  3. Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, USA

    • Stephanie Lau
    • , Kate T. Montgomery
    •  & Raju Kucherlapati
  4. Department of Ophthalmology, University Hospital of Helsinki, Helsinki, Finland

    • Tero Kivelä

Authors

  1. Search for Natalia S. Pellegata in:

  2. Search for Jose L. Dieguez-Lucena in:

  3. Search for Tarja Joensuu in:

  4. Search for Stephanie Lau in:

  5. Search for Kate T. Montgomery in:

  6. Search for Ralf Krahe in:

  7. Search for Tero Kivelä in:

  8. Search for Raju Kucherlapati in:

  9. Search for Henrik Forsius in:

  10. Search for Albert de la Chapelle in:

Corresponding author

Correspondence to Albert de la Chapelle.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/75664

Further reading