Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting in linear DNA duplexes with two complementary probe strands for hybrid stability

Abstract

A new in vitro hybridization reaction targets two short complementary RecA protein-coated DNA probes to homologous sequences at any position in a linear duplex DNA molecule. Stable hybrids are obtained after RecA protein removal when both complementary probe strands are present in a four-stranded hybrid, but not when one probe strand is present in a three-stranded hybrid. In four-stranded hybrids with one probe strand biotinylated and the other radiolabelled, the deproteinized hybrids can be isolated and detected by affinity capture on streptavidin-coated magnetic beads. RecA-mediated targeting of complementary biotinylated DNA probe strands allows the affinity capture of 48.5-kilobase duplex λ genomic DNA. These reactions provide a means of isolating any desired duplex gene or chromosomal DNA fragment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olson, M., Hood, L., Cantor, C. & Botstein, D. New gene plan for genome mapping. Science 245, 1434–1435 (1989).

    Article  CAS  Google Scholar 

  2. Moser, H. & Dervan, P. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238, 645–650 (1987).

    Article  CAS  Google Scholar 

  3. Beal, P. & Dervan, P. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–1363 (1991).

    Article  CAS  Google Scholar 

  4. Strobel, S., Moser, H. & Dervan, P. Double-strand cleavage of genomic DNA at a single site by triple-helix formation. J. Am. chem. Soc. 110, 7927–7929 (1988).

    Article  CAS  Google Scholar 

  5. Strobel, S., Doucette-Stamm, L., Riba, L., Housman, D. & Dervan, P. Site-specific cleavage of human chromosome 4 mediated by triple-helix formation. Science 254, 1639–1642 (1991).

    Article  CAS  Google Scholar 

  6. Ito, T., Smith, C. & Cantor, C. Sequence-specific DNA purification by triplex affinity capture. Proc. natn. Acad. Sci. U.S.A. 89, 495–498 (1992).

    Article  CAS  Google Scholar 

  7. Takashi, I., Smith, C. & Cantor, C. Triplex affinity capture of a single copy gene from a yeast genomic library. Nucl. Acids Res. 20, 3524 (1992).

    Article  Google Scholar 

  8. Weinstock, P. & Wetmur, J. Branch capture reactions: effect of recipient structure. Nucl. Acids Res. 18, 4207–4213 (1990).

    Article  CAS  Google Scholar 

  9. Quartin, R., Plewinska, M. & Wetmur, J. Branch migration mediated DNA labeling and cloning. Biochemistry 28, 8676–8682 (1989).

    Article  CAS  Google Scholar 

  10. Hsieh, P., Camerini-Otero, C. & Camerini-Otero, R. Pairing of homologous DNA sequences by proteins: evidence for three-stranded DNA. Genes Dev. 4, 1951–1963 (1990).

    Article  CAS  Google Scholar 

  11. Ferrin, L. & Camerini-Otero, R. Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage. Science 254, 1494–1497 (1991).

    Article  CAS  Google Scholar 

  12. Rigas, B., Welcher, A., Ward, D. & Weissman, S. Rapid plasmid library screening using RecA-coated biotinylated probes. Proc. natn. Acad. Sci. U.S.A. 83, 99591–9595 (1986).

    Article  Google Scholar 

  13. Bryant, F. & Lehman, I. On the mechanism of renaturation of complementary DNA strands by the recA protein of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 82, 297–301 (1985).

    Article  CAS  Google Scholar 

  14. Leahy, M. & Radding, C. Topography of the interaction of recA protein with single-stranded deoxyoligonucleotides. J. biol. Chem. 261, 6954–6960 (1986).

    CAS  PubMed  Google Scholar 

  15. McEntee, K., Weinstock, G. & Lehman, I. Binding of the RecA protein of Escherichia coli to single- and double-stranded DNA. J. biol. Chem. 256, 8835–8844 (1981).

    CAS  Google Scholar 

  16. Register, J. & Griffith, J. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J. biol. Chem. 260, 12308–12312 (1985).

    CAS  PubMed  Google Scholar 

  17. Egelman, E. & Stasiak, A. The structure of helical RecA-DNA complexes. I. Complexes formed in the presence of ATP-γ-S or ATP. J. molec. Biol. 191, 677–697 (1986).

    Article  CAS  Google Scholar 

  18. Egelman, E. & Stasiak, A. RecA-DNA complexes. II. Local conformational changes visualized in bundles of RecA-ATP-γ-S filaments. J. molec. Biol. 200, 329–349 (1988).

    Article  CAS  Google Scholar 

  19. Story, R., Weber, I. & Steitz, T. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318–325 (1992).

    Article  CAS  Google Scholar 

  20. Kriegstein, H. & Hogness, D. Mechanism of DNA replication in Drosophila chromosomes: Structureof replication forks and evidence for bidirectionalrty. Proc. natn. Acad. Sci. U.S.A. 71, 135–139 (1974).

    Article  CAS  Google Scholar 

  21. Baldari, C., Amaldi, F. & Buongiorno-Nardelli, M. Electron microscopic analysis of replicating DNA of sea urchin embryos. Cell 15, 1095–1107 (1978).

    Article  CAS  Google Scholar 

  22. Brewer, B., Sena, E. & Fangman, W. Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Cancer Cells 6, 229–234 (1988).

    CAS  Google Scholar 

  23. Frederick, C. et al. Kinked DNA in crystalline complex with Eco Rl endonuclease. Nature 309, 327–330 (1984).

    Article  CAS  Google Scholar 

  24. McGavin, S. Models of specifically paired like (homologous) nucleic acid structures. J. molec. Biol. 55, 293–298 (1971).

    Article  CAS  Google Scholar 

  25. Howard-Flanders, P., West, S. & Stasiak, A. Role of RecA protein spiral filaments in genetic recombination. Nature 309, 215–220 (1984).

    Article  CAS  Google Scholar 

  26. Wilson, J. Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem. Proc. natn. Acad. Sci U.S.A. 76, 3641–3645 (1979).

    Article  CAS  Google Scholar 

  27. Umlauf, C., Cox, M. & Inman, R. Triple-helical DNA pairing intermediates formed by recA protein. J. biol. Chem. 265, 16898–16921 (1990).

    CAS  PubMed  Google Scholar 

  28. Rao, B., Dutreix, M. & Radding, C. Stable three-stranded DNA made by RecA protein. Proc. natn. Acad. Sci. U.S.A. 88, 2984–2988 (1991).

    Article  CAS  Google Scholar 

  29. Roca, A. & Cox, M. The RecA Protein: Structure and Function. Crit. Rev. Biochem. molec. Biol. 25, 415–456 (1990).

    Article  CAS  Google Scholar 

  30. Lindsley, J. & Cox, M. On RecA protein-mediated homologous alignment of two DNA molecules. Three strands versus four strands. J. biol. Chem. 265, 10164–10171 (1990).

    CAS  PubMed  Google Scholar 

  31. Jain, S., Inman, R. & Cox, M. Three-stranded DNA pairing intermediate in recA protein-mediated DNA strand exchange: no role for guanine N-7. J. biol. Chem. 267, 4215–4222 (1992).

    CAS  PubMed  Google Scholar 

  32. McEntee, K., Weinstock, G. & Lehman, I. Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 76, 2615–2619 (1979).

    Article  CAS  Google Scholar 

  33. Shibata, T., DasGupta, C., Cunningham, R. & Radding, C. Purified Escherichia coli RecA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc. natn. Acad. Sci. U.S.A. 76, 1638–1642 (1979).

    Article  CAS  Google Scholar 

  34. Schlessinger, D. Yeast artificial chromosomes: Tools for mapping and analysis of complex genomes. Trends Genet. 6, 248–258 (1990).

    Article  CAS  Google Scholar 

  35. Corey, D. & Schultz, P. Generation of a hybrid sequence-specific single-stranded deoxyribonuclease. Science 238, 1401–1403 (1987).

    Article  CAS  Google Scholar 

  36. Pinkel, D., Straume, T. & Gray, J. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. natn. Acad. Sci. U.S.A. 83, 2934–2938 (1986).

    Article  CAS  Google Scholar 

  37. Sambrook, J., Fritsch, E. & Maniatis, T. in Molecular Cloning 2nd edn (eds, Nolan, C. et al.) (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989).

    Google Scholar 

  38. Cheng, S., Van Houten, B., Gamper, H., Sancar, A. & Hearst, J. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J. biol. Chem. 263, 15110–15117 (1988).

    CAS  PubMed  Google Scholar 

  39. Uhlin, B. & Clark, A. Overproduction of the Escherichia coli recA protein without stimulation of its proteolytic activity. J. Bacteriol. 148, 386–390 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shibata, T., Cunningham, R. & Radding, C. Homologous pairing in genetic recombination: Purification and characterization of Escherichia coli recA protein. J. biol. Chem. 256, 7557–7564 (1981).

    CAS  PubMed  Google Scholar 

  41. Griffith, J. & Shores, C. RecA protein rapidly crystallizes in the presence of sperimidine: a valuable step in its purification and physical characterization. Biochemistry 24, 158–162 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sena, E., Zarling, D. Targeting in linear DNA duplexes with two complementary probe strands for hybrid stability. Nat Genet 3, 365–372 (1993). https://doi.org/10.1038/ng0493-365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0493-365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing