Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes

Abstract

Type 1, or insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease associated with loss of tolerance to several pancreatic islet cell molecules, including insulin, glutamic acid decarboxylase (GAD), ICA69 and the tyrosine phosphatase IA-2 (refs 1–3). Among several predisposing loci, IDDM2 maps to the insulin gene (INS) VNTR (variable number of tandem repeats) minisatellite on chromosome 11p15 (refs 4–9). Allelic variation at this VNTR locus correlates with steady-state levels of INS mRNA in pancreas8,10–11 and transfected rodent cell lines12,14, but it is difficult to reconcile the association of lower INS mRNA levels in the pancreas with class III VNTRs that are dominantly protective from IDDM8,15. We show that during fetal development and childhood, mRNAs for insulin and other islet cell autoantigens (GAD, ICA69, IA-2) are expressed at low levels in the human thymus. Critically, we also detect proinsulin and insulin protein. VNTR alleles correlate with differential INS mRNA expression in the thymus where, in contrast to the pancreas, protective class III VNTRs are associated with higher steady-state levels of INS mRNA expression. This finding provides a plausible explanation for the dominant protective effect of class III VNTRs, and suggests that diabetes susceptibility and resistance associated with IDDM2 may derive from the VNTR influence on INS transcription in the thymus. Higher levels of (pro)insulin in the thymus may promote negative selection (deletion) of insulin-specific T-lymphocytes which play a critical role in the pathogenesis of type-1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atkinson, M.A. & Maclaren, N.K. The pathogenesis of insulin-dependent diabetes mellitus. New Engl. J. Med. 331, 1428–1436 (1994).

    Article  CAS  Google Scholar 

  2. Pietropaolo, M. et al. Islet cell autoantigen 69 kDa (ICA69): molecular cloning and characterization of a novel diabetes associated autoantigen. J. Clin. Invest. 92, 359–371 (1993).

    Article  CAS  Google Scholar 

  3. Rabin, D.U. et al. Islet cell antigen 512 is a diabetes-specific islet autoantigen related to protein tyrosine phosphatases. J. Immunol. 152, 3183–3188 (1994).

    CAS  PubMed  Google Scholar 

  4. Bell, G.I. Horita, S. & Karam, J.H. A polymorphic locus near the human insulin gene is associated with insulin dependent diabetes mellitus. Diabetes 33, 176–183 (1984).

    Article  CAS  Google Scholar 

  5. Julier, C. et al. Insulin-IGF2 region encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  CAS  Google Scholar 

  6. Lucassen, A. et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1-kb segment of DNA spanning the insulin gene and associated VNTR. Nature Genet. 4, 305–310 (1993).

    Article  CAS  Google Scholar 

  7. Owerbach, D. & Gabbay, K.H. Localization of a Type I diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes 42, 1708–1714 (1993).

    Article  CAS  Google Scholar 

  8. Bennett, S.T. et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genet. 9, 284–292 (1995).

    Article  CAS  Google Scholar 

  9. Undlien, D.E. et al. Insulin gene region-encoded susceptibility to IDDM maps upstream of the insulin gene. Diabetes 44, 620–625 (1995).

    Article  CAS  Google Scholar 

  10. Bennett, S.T. et al. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J. Autoimmun. 9, 415–421 (1996).

    Article  CAS  Google Scholar 

  11. Vafiadis, P. et al. Imprinted and genotype-specific expression of genes at the IDDM2 locus in pancreas and leucocytes. J. Autoimmun. 9, 397–403 (1996).

    Article  CAS  Google Scholar 

  12. Catignani Kennedy, G. German, M.S. & Rutter, W.J. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nature Genet. 9, 293–298 (1995).

    Article  Google Scholar 

  13. Lucassen, A.M. Screaton, G.R. Julier, C. Elliott, T.J. Lathrop, M. & Bell, J.I. Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum. Mol. Genet. 4, 501–506 (1995).

    Article  CAS  Google Scholar 

  14. Owerbach, D. & Gabbay, K.H. The search for IDDM susceptibility genes. Diabetes 45, 544–551 (1996).

    Article  CAS  Google Scholar 

  15. Pugliese, A. Awdeh, Z.L. Alper, C.A. Jackson, R.A. & Eisenbarth, G.S. The paternally inherited insulin gene B allele (1,428 Fokl site) confers protection from insulin-dependent diabetes in families. J. Autoimmun. 7, 687–694 (1994).

    Article  CAS  Google Scholar 

  16. Bell, G.I. Selby, M.J. & Rutter, W.J. The highly polymorphic region near the insulin gene is composed of simple tandemly repeating sequences. Nature 295, 31–35 (1982).

    Article  CAS  Google Scholar 

  17. Jolicouer, C. Hanahan, D. & Smith, K.M. T-cell tolerance toward a transgenic betacell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. Sci. USA 91, 6707–6711 (1994).

    Article  Google Scholar 

  18. Oehen, S.U. et al. Escape of thymocytes and mature T cells from clonal deletion due to limiting tolerogen expression levels. Cell. Immunol. 158, 342–352 (1994).

    Article  CAS  Google Scholar 

  19. Sebzda, E. et al. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263, 1615–1618 (1994).

    Article  CAS  Google Scholar 

  20. Kuglin, B. Gries, F.A. & Kolb, H. Evidence for IgG autoantibodies against human proinsulin in patients with IDDM before insulin treatment. Diabetes 37, 130–132 (1988).

    Article  CAS  Google Scholar 

  21. Castano, L. Ziegler, A. Ziegler, R. Shoelson, S. & Eisenbarth, G.S. Characterization of insulin autoantibodies in relatives of patients with insulin-dependent diabetes mellitus. Diabetes 42, 1202–1209 (1993).

    Article  CAS  Google Scholar 

  22. Griffin, A.C. Zhao, W. Wegmann, K.W. & Hickey, W.F. Experimental autoimmune insulitis. Induction by T lymphocytes specific for a peptide of proinsulin. Am. J. Path. 147, 845–857 (1995).

    CAS  PubMed  Google Scholar 

  23. Keilacker, H. Rjasanowski, I. Besch, W. & Kohnert, K.D. Autoantibodies to insulin and to proinsulin in type 1 diabetic patients and in at-risk probands differentiate only little between both antigens. Hormone Metab. Res. 27, 90–94 (1995).

    Article  CAS  Google Scholar 

  24. French, M.B. et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46, 34–39 (1997).

    Article  CAS  Google Scholar 

  25. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alles at the IDDM2 locus. Nature Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  26. Bennett, S.T. & Todd, J.A. Human type 1 diabetes and the insulin gene: Principles of mapping polygenes. Ann. Rev. Genet. 30, 343–370 (1996).

    Article  CAS  Google Scholar 

  27. Hoffman, A.R. & Vu, T.H. Sci. Am. 1, 52–61 (1996).

    Google Scholar 

  28. Polychronakos, C. Kukuvitis, A. Giannoukakis, N. & Colle, E. Parental imprinting effect at the INS-IGF2 diabetes susceptibility locus. Diabetologia 38, 715–719 (1995).

    Article  CAS  Google Scholar 

  29. Bui, M.M. et al. Paternally transmitted IDDM2 influences diabetes susceptibility despite biallelic expression of the insulin gene in human pancreas. J. Autoimmun. 9, 97–103 (1996).

    Article  CAS  Google Scholar 

  30. Vu, T.H. Hoffman, A.R. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 371, 714–717 (1994).

    Article  CAS  Google Scholar 

  31. Xu, Y. Goodyear, C.G. Deal, C. & Polychronakos, C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem. Biophys. Res. Comm. 197, 747–754 (1993).

    Article  CAS  Google Scholar 

  32. Mally, M.J. Cirulli, V. Hayek, A. Otonkoski, T. ICA69 is expressed equally in the human endocrine and exocrine pancreas. Diabetologia 39, 474–480 (1996).

    Article  CAS  Google Scholar 

  33. Lan, M.S. Goto, J.L. Notkins, A.L. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 13, 505–514 (1994).

    Article  CAS  Google Scholar 

  34. Devaskar, S.U. Singh, B.S. Carnaghi, L.R. Rajakumar, P.A. Giddings & S.J. Insulin II gene expression in rat central nervous system. Reg. Peptides 48, 55–63 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Pugliese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliese, A., Zeller, M., Fernandez, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15, 293–297 (1997). https://doi.org/10.1038/ng0397-293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0397-293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing