Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered cleavage and secretion of a recombinant β–APP bearing the Swedish familial Alzheimer's disease mutation

Abstract

Mutations within the β–amyloid precursor protein gene cosegregate with the early–onset form of familial Alzheimer's Disease (FAD). It is not known how these mutations result in disease; however, one early–onset AD mutation in a Swedish kindred increases potentially amyloidogenic fragments and β–protein production in cells expressing the mutant β–APP. Using a novel recombinant reporter system we found a qualitative change in the secreted product, from cleavage within the β–protein sequence to cleavage near the N–terminal region of the β–protein, even though the total amount of secreted mutant product is similar to wild–type. The results suggest that the increased formation of potentially amyloidogenic fragments in cells expressing the Swedish FAD occurs by enzymatic cleavage in the secretory pathway. Alterations in the secretory process may predispose an individual to AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    Article  CAS  Google Scholar 

  2. St. George-Hyslop, P.H. et al. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science 235, 885–890 (1987).

    Article  CAS  Google Scholar 

  3. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  Google Scholar 

  4. Hardy, J. et al. Molecular classification of Alzheimer's disease. Lancet 337, 1342–1343 (1991).

    Google Scholar 

  5. Naruse, S. et al. Mis-sense mutation Val → lle in exon 17 of amyloid precursor protein in Japanese familial Alzheimer's disease. Lancet 337, 978–979 (1991).

    Article  CAS  Google Scholar 

  6. Van Duijn, C.M. et al. Amyloid precursor protein gene mutation in early-onset Alzheimer's disease. Lancet 337, 978 (1991).

    Article  CAS  Google Scholar 

  7. Murrell, J., Farlow, M., Ghetti, B. & Benson, M.D. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254, 97–99 (1991).

    Article  CAS  Google Scholar 

  8. Chartier-Harlin, M.-C. et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–846 (1991).

    Article  CAS  Google Scholar 

  9. Mullan, M. et al. A pathogenic mutation for probable Alzheimer's disease in the APR gene at the N-terminus of β-amyloid. Nature Genet. 1, 345–347 (1992).

    Article  CAS  Google Scholar 

  10. Felsenstein, K. & Lewis-Higgin, L. Processing of the β-amyloid precursor protein carrying the familial, Dutch-type, and a novel recombinant C-terminal mutation. Neurosci. Lett. 152, 185–189 (1993).

    Article  CAS  Google Scholar 

  11. Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increase β-protein production. Nature 360, 672–674 (1992).

    Article  CAS  Google Scholar 

  12. Cai, X-D., Golde, T.E. & Younkin, S.G. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516 (1993).

    Article  CAS  Google Scholar 

  13. Sisodia, S., Koo, E.H., Beyreuther, K., Unterbeck, A. & Price, D.L. Evidence that β-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492–495 (1990).

    Article  CAS  Google Scholar 

  14. Esch, F.S. et al. Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248, 1122–1124 (1990).

    Article  CAS  Google Scholar 

  15. Anderson, J.P. et al. Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12 cells. Neurosci. Lett. 128, 126–128 (1991).

    Article  CAS  Google Scholar 

  16. Seubert, P. et al. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. Nature 361, 260–263 (1993).

    Article  CAS  Google Scholar 

  17. Weidemann, A. et al. Identification, biogenesis and localization of precursors of Alzheimer's disease A4 amyloid protein. J. biol. Chem. 266, 16960–16964 (1989).

    Google Scholar 

  18. Sisodia, S.S. Amyloid precursor protein cleavage by a membrane bound protease. Proc. natn. Acad. Sci. U.S.A. 89, 6075–6079 (1992).

    Article  CAS  Google Scholar 

  19. Anderson, J.P. et al. Differential brain expression of the Alzheimer amyloid precursor protein. EMBO J. 8, 3627–3632 (1989).

    Article  CAS  Google Scholar 

  20. Anderson, J.P., Chen, Y., Kim, K.S. & Robakis, N.K. An alternative secretase cleavage produces soluble Alzheimer amyloid precursor protein containing a potentially amyloidogenic sequence. Neurochem. J. 59, 2328–2331 (1992).

    Article  CAS  Google Scholar 

  21. Golde, T.E., Estus, S., Younkin, L., Selkoe, D.J. & Younkin, S.G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255, 728–730 (1992).

    Article  CAS  Google Scholar 

  22. Sahasrabudhe, S.R. et al. Release of amino-terminal fragments from amyloid precursor protein reporter and mutated derivatives in cultured cells. J. biol. Chem. 267, 25602–25608 (1992).

    CAS  PubMed  Google Scholar 

  23. Haass, C. et al. Targeting of cell surface β amyloid precursor to lysosomes: Alternative processing in amyloid bearing fragments. Nature 357, 500–503 (1992).

    Article  CAS  Google Scholar 

  24. Dorner, A.J. & Kaufman, R.J. Analysis of synthesis, processing, and secretion of proteins expressed in mammalian cells. Meth. Enzymol. 185, 577–596 (1990).

    Article  CAS  Google Scholar 

  25. Glenner, G.G. & Wong, C.W. Alzheimer's disease and Down's Syndrome: Sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135 (1984).

    Article  CAS  Google Scholar 

  26. Masters, C.L. et al. Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4, 2757–2763 (1985).

    Article  CAS  Google Scholar 

  27. Glenner, G.G. & Wong, C.W. Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 855–890 (1984).

    Article  Google Scholar 

  28. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  Google Scholar 

  29. Busciglio, J., Gabzuda, D.H., Matsudaira, P. & Yankner, B.A. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. natn. Acad. Sci. U.S.A. 90, 2092–2096 (1993).

    Article  CAS  Google Scholar 

  30. Haass, C., Hung, A.Y., Schlossmacher, M.G., Teplow, D.B. & Selkoe, D.J. β-amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. biol. Chem. 268, 3021–3024 (1993).

    CAS  PubMed  Google Scholar 

  31. Berger, J. et al. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988).

    Article  CAS  Google Scholar 

  32. Henthorn, P. et al. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression. Proc. natn. Acad. Sci. U.S.A. 85, 6342–6346 (1988).

    Article  CAS  Google Scholar 

  33. Sayers, J.R., Schmidt, W. & Eckstein, F. 5′-3′ exonuclease in phosphorothioate-based olignucleotide directed mutagenesis. Nucl. Acids Res. 16, 791–802 (1988).

    Article  CAS  Google Scholar 

  34. Clemmons, D.J. et al. Evaluation of a subcutaneously implanted chamber for anitbody production in rabbits. Lab. An. Sci. 4, 307–311 (1992).

    Google Scholar 

  35. Kim, K.S. et al. Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid. Neurosci. Res. Commun. 2, 121–130 (1988).

    CAS  Google Scholar 

  36. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felsenstein, K., Hunihan, L. & Roberts, S. Altered cleavage and secretion of a recombinant β–APP bearing the Swedish familial Alzheimer's disease mutation. Nat Genet 6, 251–256 (1994). https://doi.org/10.1038/ng0394-251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0394-251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing