Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors

Abstract

To evaluate the potential for adenovirus–mediated central nervous system (CMS) gene transfer, the replication deficient recombinant adenovirus vectors Ad.RSVβgal (coding for β–galactosidase) and Ad–α1AT (coding for human α1–antitrypsin) were administered to the lateral ventricle of rats. Ad.RSVβgal transferred β–galactosidase to ependymal cells lining the ventricles whereas Ad–α1AT mediated α1 –antitrypsin secretion into the cerebral spinal fluid for 1 week. These observations, together with β–galactosidase activity in the globus pallidus and substantia nigra following stereotactic administration of Ad.RSVβgal to the globus pallidus, suggest that adenovirus vectors will be useful for CNS gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harbaugh, R.E., Novel CNS-directed drug delivery systems in Alzheimer's disease and other neurological disorders. Neurobiol. Aging 10, 623–629 (1989).

    Article  CAS  Google Scholar 

  2. Krieger, D.T. & Martin, J.B. Brain peptides. New Engl. J. Med. 304, 944–951 (1981).

    Article  CAS  Google Scholar 

  3. Pardridge, W.M. Recent advances in blood-brain barrier transport. Ann. Rev. Pharmacol. Toxicol. 28, 25–39 (1988).

    Article  CAS  Google Scholar 

  4. Wood, J.H. in Neurobiology of Cerebrospynal Fluid (Plenum Press, New York, 1983).

    Book  Google Scholar 

  5. Brumback, R.R. in The Cerebrospinal Fluid (eds Herndon, R. & Brumback, R.) 15–43 (Kluwer Academic Publishers, 1989).

    Book  Google Scholar 

  6. Rosemberg, M.B. et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 2, 1575–1578 (1988).

    Article  Google Scholar 

  7. Shimohama, S. et al. Grafting genetically modified cells into the rat brain: characteristic of E coli β-galactosidase as a reporter gene. Brain Res. molec. Brain Res. 5, 271–278 (1989).

    Article  CAS  Google Scholar 

  8. Dobson, A.T., Margolis, T.P., Sedarati, F., Stevens, J.G. & Feldman, L.T. A latent, nonpathogenetic HSV-1-derived vector stably express β-galactosidase in mouse neurons. Neuron 5, 353–360 (1990).

    Article  CAS  Google Scholar 

  9. Gage, F.H. et al. Grafting genetically modified cells to the brain: conceptual and technical issues. Prog. Brain Res. 82, 1–10 (1990).

    Article  CAS  Google Scholar 

  10. Kawaja, M.D., Rosemberg, M.B., Yoshida, K. & Gage, F.H. Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats. J. Neurosci. 12, 2849–2864 (1992).

    Article  CAS  Google Scholar 

  11. Wolfe, J.H., Deshmane, S.L. & Frazer, N.W. Herpesvirus vector gene transfer and expression of β-glucuronidase in the central nervous system of MPS VII mice. Nature Genet. 1, 379–384 (1992).

    Article  CAS  Google Scholar 

  12. Culver, K.W. et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    Article  CAS  Google Scholar 

  13. Andersen, J.K., Garber, D.A., Meaney, C.A. & Breakfield, X.O. Gene transfer into mammalian nervous system using herpes virus vectors: extended expression of bacterial lacZ in neurons using the neuron-specific enolase promoter. Hum. Gene Ther. 3, 487–499 (1992).

    Article  CAS  Google Scholar 

  14. Huang, Q. et al. Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: a light and electron microscopy study. Exp. Neurol. 115, 303–316 (1992).

    Article  CAS  Google Scholar 

  15. Federoff, H.J., Geshwind, M.D., Geller, A.I. & Kessler, J.A. Expression of nerve growth factor in vivo from defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc. natn. Acad. Sci. U.S.A. 89, 1636–1640 (1992).

    Article  CAS  Google Scholar 

  16. Ono, T., Fujino, Y., Tsuchiya, T. & Tsuda, M. Plasmid DNAs directly injected into mouse brain with lipofectin can be incorporated and expressed by brain cells. Neurosci. Lett. 117, 259–263 (1990).

    Article  CAS  Google Scholar 

  17. Rosenfeld, M.A. et al. Adenovirus-mediated transfer of a recombinant α1-antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434 (1991).

    Article  CAS  Google Scholar 

  18. Rosenfeld, M.A. et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143–155 (1992).

    Article  CAS  Google Scholar 

  19. Jaffe, H.A. et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nature Genet. 1, 372–378 (1992).

    Article  CAS  Google Scholar 

  20. Mastrangeli, A. et al. Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer. J. clin. Invest. 91, 225–234 (1993).

    Article  CAS  Google Scholar 

  21. Miettinen, M., Clark, R. & Virtanen, I. Intermediate filament proteins in choroid plexus and ependyma and their tumors. Am. J. Pathol. 123, 231–240 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kasper, M. Cytokeratin in intracranial and intraspinal tissue. Adv. Anat Embryol. Cell. Biol. 126, 1–82 (1992).

    Article  CAS  Google Scholar 

  23. Balercia, G., Bentivoglio, M. & Kruger, L. Fine structural organization of the ependymal region of the paraventricular nucleus of the rat thalamus and its relation with projection neurons. J. Neurocytol. 21, 105–109 (1991).

    Article  Google Scholar 

  24. Bass, N. & Lundborg, P. Postnatal development of bulk flow in the cerebro-spinal fluid system of the albino rat: clearance of carboxyl-[14C]inulin after intrathecal infusion. Brain Res. 52, 323–332 (1973).

    Article  CAS  Google Scholar 

  25. Pardrige, W. Strategies for drug delivery through the blood-brain barrier. Neurobiol. Aging 10, 636–637 (1989).

    Article  Google Scholar 

  26. Bowsher, D. Pathway of absorption of proteins from the cerebrospinal fluid: an autoradiographic study in the cat. Anat. Rec. 128, 23–39 (1957).

    Article  CAS  Google Scholar 

  27. Lemarchand, P. et al. Adenovirus-mediated transfer of a recombinant human α1-antitrypsin cDNA to human endothelial cells. Proc. natn. Acad. Sci. U.S.A. 89, 6482–6486 (1992).

    Article  CAS  Google Scholar 

  28. Horwitz, M.S. Adenoviridae and Their Replication. in Fundamental Virology (eds Fields, B. N. & Knipe, D.M.) 1679–1721 (Raven Press, New York, 1991).

    Google Scholar 

  29. Rotman, B. Measurement of activity of single molecules of β-D-galactosidase. Proc. natn. Acad. Sci. U.S.A. 47, 1981–1991 (1961).

    Article  CAS  Google Scholar 

  30. Paxinos, G. & Watson, C. in The Rat Brain in Stereotaxic Coordinates (Academic Press, Sidney, 1982).

    Google Scholar 

  31. Dannenberg, A.M. & Suga, M. in Methods for Studying Mononuclear Phagocytes, (eds Adams, D.O., Edelson, P.J. & Koren, H.S.) 375–395 (Academic Press, New York, 1981).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajocchi, G., Feldman, S., Crystal, R. et al. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nat Genet 3, 229–234 (1993). https://doi.org/10.1038/ng0393-229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0393-229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing