Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids

Abstract

Targeted modification of human chromosomal alleles by homologous recombination is a powerful approach to study gene function, but gene targeting in mammalian cells is an inefficient process. In contrast, gene targeting in a chicken pre-B cell line, DT40, is highly efficient. We have transferred human chromosome 11 into DT40 cells by microcell fusion, and find that the resulting hybrids are recombination-proficient. In these cells, targeting efficiencies into the chicken ovalbumin locus were >90% and into the human p-globin and Ha-ras loci were 10–15%. These modified human chromosomes can be transferred subsequently to mammalian cells for functional tests. This chromosome shuttle system allows for the efficient homologous modification of human chromosomal genes, and for subsequent phenotypic analyses of the modified alleles in different mammalian cell types

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  Google Scholar 

  2. Buerstedde, J.M. & Takeda, S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67, 179–188 (1991).

    Article  CAS  Google Scholar 

  3. Takata, M. et al. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13, 1341–1349(1994).

    Article  CAS  Google Scholar 

  4. Takeda, S., Masteller, E.L., Thompson, C.B. & Buerstedde, J. RAG-2 expression is not essential for chicken immunoglobin gene conversion. Proc. Natl. Acad. Sci. USA 89, 4023–4027 (1992).

    Article  CAS  Google Scholar 

  5. Forrester, W.C. et al. A deletion of the human β-globin locus control region causes a major alteration in chromatin structure and replication across the entire β--globin locus. Genes. Dev. 4, 1637–1649 (1990).

    Article  CAS  Google Scholar 

  6. Epner, E.M., Kim, C.G. & Groudine, M. What does the locus control region control? Curr. Bid. 2, 262–264 (1992).

    Article  CAS  Google Scholar 

  7. Kim, C.G., Epner, E.M., Forrester, W.C. & Groudine, M. Inactivation of the human β-globin gene by targeted insertion into the β--globin locus control region. Genes. Dev. 6, 928–938 (1992).

    Article  CAS  Google Scholar 

  8. Li, Y. & Ponce de Leon, F.A. Partitioning of the chicken genome by microcell hybridization. Poultry Sci. 71, 151–160 (1992).

    Article  CAS  Google Scholar 

  9. Kao, F.T. Identification of chick chromosomes in cell hybrids formed between chick erythrocytes and adenine-requiring mutants of Chinese hamster cells. Proc. Natl. Acad. Sci. USA 70, 2893–2898 (1973).

    Article  CAS  Google Scholar 

  10. Ringertz, N.R. & Bolund, L. Reactivation of chick erythrocyte nuclei by somatic cell hybridization. Intl. Rev. Exp. Path. 13, 83–116 (1974).

    CAS  Google Scholar 

  11. Aladjem, M.I. et al. Participation of the human β-globin locus control region in initiation of DMA replication. Science 270, 815–819 (1995).

    Article  CAS  Google Scholar 

  12. Fiering, S., Kim, C.G., Epner, E.M. & Groudine, M. An “in-out” strategy using gene targeting and FLP recombinase for the functional dissection of complex DMA regulatory elements: analysis of the β-globin locus control region. Proc. Natl. Acad. Sci. USA 90,, 8469–8473 (1993).

    Article  Google Scholar 

  13. Shapero, M.H., Langston, A.A. & Fournier, R.E.K. Tissue-specific extinguisher loci in the human genome: a screening study based on random marking and transfer of human chromosomes. Somat. Cell Mol. Genet. 20, 215–231 (1994).

    Article  CAS  Google Scholar 

  14. Theune, S., Fung, J., Todd, S., Sakaguchi, A.Y. & Naylor, S.L. PCR primers for human chromosomes: reagents for the rapid analysis of somatic cell hybrids. Genomics 9, 511–516 (1991).

    Article  CAS  Google Scholar 

  15. Deisseroth, A. & Hendrick, D. Human β-globin expression following chromosomal dependent gene transfer into mouse erythroleukemia cells. Cell 15, 55–63 (1978).

    Article  CAS  Google Scholar 

  16. Raich, N.V. et al. Regulated expression of the overlapping ubiquitous and erythroid transcription units of the human porphobilinogen deaminase (PBG-D) gene introduced into non-erythroid and erythroid cells. J. Biol. Chem. 264, 10186–10192 (1989).

    CAS  PubMed  Google Scholar 

  17. Baron, M. & Maniatis, T. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46, 591–602 (1986).

    Article  CAS  Google Scholar 

  18. Papayannopoulou, T., Enver, T., Takegawa, S., Anagnou, N.P. & Stamatoyannopoulos, G. Activation of developmentally mutated human globin genes by cell fusion. Science 242, 1056–1058 (1988).

    Article  CAS  Google Scholar 

  19. Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85, 5166–5170 (1988).

    Article  CAS  Google Scholar 

  20. Leach, R.J., Thayer, M.J., Schafer, A.J. & Fournier, R.E.K. Physical mapping of human chromosome 17 using fragment-containing microcell hybrids. Genomics 5, 167–176 (1989).

    Article  CAS  Google Scholar 

  21. Fiering, S. et al. Targeted deletion of 5′ HS2 of the murine β-globin locus control region reveals that it is not essential for proper regulation of the β-globin locus. Genes. Dev. (in the press).

  22. Charron, J., Malynn, B.A., Robertson, E.J., Goff, S.P. & Alt, F.W. High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol. Cell. Biol. 10, 1799–1804 (1990).

    Article  CAS  Google Scholar 

  23. Xu, L. et al. Replacement of germ-line epsilon promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc. Natl. Acad. Sci. USA 90, 3705–3709 (1993).

    Article  CAS  Google Scholar 

  24. Bautista, D. & Shulman, M.J. A hit-and-run system for introducing mutations into the Ig H chain locus of hybridoma cells by homologous recombination. J. Immun. 151, 1950–1958 (1993).

    CAS  PubMed  Google Scholar 

  25. Zhen, L. et al. Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc. Natl. Acad. Sci. USA 90, 9832–9836 (1993).

    Article  CAS  Google Scholar 

  26. Sheseley, E.G. et al. Correction of human beta βS-globin by gene targeting. Proc. Natl. Acad. Sci. USA 88, 4294–4298 (1991).

    Article  Google Scholar 

  27. Gourdeau, H. & Fournier, R.E.K. Genetic analysis of mammalian cell differentiation. Annu. Rev. Cell. Biol. 6, 69–94 (1990).

    Article  CAS  Google Scholar 

  28. Choi, O.R. & Engel, J.D. Developmental regulation of β-globin gene switching. Cell 55, 17–26 (1988).

    Article  CAS  Google Scholar 

  29. Baba, T.W., Giroir, B.P. & Humphries, E.H. Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology 144, 139–151 (1985).

    Article  CAS  Google Scholar 

  30. Chen, T.R. In situ detection of mycoplasma contamination in cell culture by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104, 255–262 (1977).

    Article  CAS  Google Scholar 

  31. Langston, A.A. & Fournier, R.E.K. Preparation and properties of microcell hybrids. Meth. Mol. Genet. 1, 115–133 (1993).

    CAS  Google Scholar 

  32. Stubblefield, E. & Pershouse, M. Direct formation of microcells from mitotic cells for use in chromosome transfer. Somat. Cell Molec. Genet. 18, 485–491 (1992).

    Article  CAS  Google Scholar 

  33. Lai, E.C., Woo, S.L., Bordelon-Riser, M.E., Fraser, T.H. & O'Malley, B.W. Ovalbumin is synthesized in mouse cells transformed with the natural chicken ovalbumin gene. Proc. Natl. Acad. Sci. USA 77,, 244–248 (1980).

    Article  Google Scholar 

  34. te Reile, H., Maandag, E.R., Clarke, A., Hooper, M. & Berns, A. Consecutive inactivation of both alleles of the pim–1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990).

    Article  Google Scholar 

  35. Yuasa, Y. et al. Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 303, 775–779 (1983).

    Article  CAS  Google Scholar 

  36. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2, 441–449 (1990).

    CAS  PubMed  Google Scholar 

  37. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  Google Scholar 

  38. Trask, B.J., Massa, H., Kenwrick, S. & Gitschier, J. Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am. J. Hum. Genet 48, 1–15 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brandriff, B., Gordon, L. & Trask, B. A new system for high-resolution DNA sequence mapping interphase pronuclei. Genomics 10, 75–82 (1991).

    Article  CAS  Google Scholar 

  40. Gebhard, W. & Zachau, H.G. Simple DNA sequences and dispersed repetitive elements in the vicinity of mouse immunoglobulin K light chain genes. J. Mol. Biol. 170, 567–573 (1983).

    Article  CAS  Google Scholar 

  41. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from nucleated cells.Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  Google Scholar 

  42. Southern, E.M. Detection of specific sequences among DNA fragments separted by gel electrophoresis. J. Mol. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieken, E., Epner, E., Fiering, S. et al. Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nat Genet 12, 174–182 (1996). https://doi.org/10.1038/ng0296-174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0296-174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing