Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards gene therapy for haemophilia B using primary human keratinocytes

Abstract

Haemophilia B might be permanently cured by gene therapy — the introduction of a correct copy of the factor IX gene into the somatic cells of a patient. Here, we have introduced a recombinant human factor IX cDNA into primary human keratinocytes by means of a defective retroviral vector. In tissue culture, transduced keratinocytes were found to secrete biologically active factor IX and after transplantation of these cells into nude mice, human factor IX was detected in the bloodstream in small quantities for one week. This is the first demonstration of a therapeutic protein reaching the bloodstream from transduced primary keratinocytes. This may have implications for the treatment of haemophilia B and other disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hedner, U. & Davie, E.W. Introduction to haemostasis and the vitamin K-dependent coagulation factors The Metabolic Basis of Inherited Disease 6th edn (eds Scriver, C. R. et al.) 2107–2134 (McGraw-Hill, New York, 1989).

    Google Scholar 

  2. 2

    Anson, D.S. et al. Towards gene therapy for haemophilia B. Molec. biol. Med. 4, 11–20 (1987).

    CAS  PubMed  Google Scholar 

  3. 3

    St Louis, D. & Verma, I.M. An alternative approach to somatic cell gene therapy. Proc. natn. Acad. Sci. U.S.A. 85, 3150–3154 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Palmer, T.D., Thompson, A.R. & Miller, A.D. Production of human factor IX in animals by genetically modified skin fibroblasts: Potential therapy for haemophilia B. Blood 73, 438–445 (1989).

    CAS  Google Scholar 

  5. 5

    Axelrod, J.H., Read, M.S., Brinkhous, K.M. & Verma, I.M. Phenotypic correction of factor IX deficiency in skin fibroblasts of haemophiliac dogs. Proc. natn. Acad. Sci. U.S.A. 87, 5173–5177 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Yao, S.-N. & Kurachi, K. Expression of human factor IX in mice after injection of genetically modified myoblasts. Proc. natn. Acad. Sci. U.S.A. 89, 3357–3361 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Yao, S.N. et al. Expression of human factor IX in rat capillary endothelial cells: Toward somatic gene therapy for haemophilia B. Proc. natn. Acad. Sci. U.S.A. 88, 8101–8105 (1991).

    CAS  Article  Google Scholar 

  8. 8

    Armentano, D., Thompson, A.R., Darlington, G. & Woo, S.L.C. Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: Potential for gene therapy of haemophilia B. Proc. natn. Acad. Sci. U.S.A. 87, 6141–6145 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Fenjves, E.S. et al. Prospects for epithelial gene therapy. DNA Damage and Repair in Human Tissues (eds Sutherland, B.M. & Woodhead, A.D.) 215–223 (Plenum Press, New York, 1990).

    Chapter  Google Scholar 

  10. 10

    Morgan, J.R., Barrandon, Y., Green, H. & Mulligan, C.R. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 237, 1476–1479 (1987).

    CAS  Article  Google Scholar 

  11. 11

    Teumer, J., Lindahl, A. & Green, H. Human growth hormone in the blood of athymic mice grafted with cultures of hormone-secreting human keratinocytes. FASEB J. 4, 3245–3250 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Furie, B. & Furie, B.C. The molecular basis of blood coagulation. Cell 53, 505–518 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Wu,S.-M., Cheung, W.-F., Frazier,D. & Stafford, D.W. Cloning and expression of the cDNA for human γ-glutamyl carboxylase. Science 254, 1634–1636 (1991).

    CAS  Article  Google Scholar 

  14. 14

    Barrandon, Y., Li, V. & Green, H. New Techniques forthe grafting of cultured epidermal cells onto athymic animals. J. Invest. Dermatol. 91, 315–318 (1988).

    CAS  Article  Google Scholar 

  15. 15

    Flowers, M.E.D. et al. Long-term transplantation of canine keratinocytes made resistant to G418 through retrovirus-mediated gene transfer. Proc. natn. Acad. Sci. U.S.A. 87, 2349–2353 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Palmer, T.D., Rosman, G.J., Osborne, W.R.A. & Miller, A.D. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. natn. Acad. Sci. U.S.A. 88, 1330–1334 (1991).

    CAS  Article  Google Scholar 

  17. 17

    Scharfmann, R., Axelrod, J.H. & Verma, I.M. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. natn. Acad. Sci. U.S.A. 88, 4626–4630 (1991).

    CAS  Article  Google Scholar 

  18. 18

    Gerrard, A.J., Austen, D.E.G. & Brownlee, G.G. Subcutaneous injection of factor IX for the treatment of haemophilia B. Br. J. Haematol. 81, 610–613 (1992).

    CAS  Article  Google Scholar 

  19. 19

    Stern, D.M., Drillings, M., Nossel, H.L., Hurlet-Jensen, A., LaGamma, K.S. & Owen, J. Binding of factors IX and IXa to cultured vascular endothelial cells. Proc. natn. Acad. Sci. U.S.A. 80, 4119–4123 (1983).

    CAS  Article  Google Scholar 

  20. 20

    Fuchs, H.E., Trapp, H.G., Griffith, M.J., Roberts, H.R. & Pizzo, S.V. Regulation of factor IXa in vitro in human and mouse plasma and in vivo in the mouse. J. clin. Invest. 73, 1696–1703 (1984).

    CAS  Article  Google Scholar 

  21. 21

    Biggs, R. & Denson, K.W.E. The fate of prothrombin and factors VIII, IX and X transfused to patients deficient in these factors. Br. J. Haematol. 9, 532–547 (1963).

    CAS  Article  Google Scholar 

  22. 22

    Fenjves, E.S., Gordon, D.A., Pershing, L.K., Williams, D.L. & Taichman, L.B. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: Implications for epidermal function and gene therapy. Proc. natn. Acad Sci. U.S.A. 86, 8803–8807 (1989).

    CAS  Article  Google Scholar 

  23. 23

    Coruh, G. & Mason, D.Y. Serum proteins in human squamous epithelium. Br. J. Dermatol. 102, 497–505 (1980).

    CAS  Article  Google Scholar 

  24. 24

    Anson, D.S., Austen, D.E.G. & Brownlee, G.G. Expression of active human clotting factor IX from recombinant DNA clones in mammalian cells. Nature 315, 683–685 (1985).

    CAS  Article  Google Scholar 

  25. 25

    Miller, A.D. & Rosman, G.R. Improved retroviral vectors for gene transfer and expression. BioTechniques 7, 980–190 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Anson, D.S. et al. The gene structure of human anti-haemophiliac factor IX. EMBO J. 3, 1053–1060 (1984).

    CAS  Article  Google Scholar 

  27. 27

    Miller, A.D. & Buttimore, C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Molec. cell. Biol. 6, 2895–2902 (1986).

    CAS  Article  Google Scholar 

  28. 28

    Miller, A.D., Trauber, D.R. & Buttimore, C. Factors involved in production of helper virus-free retrovirus vectors. Somat. Cell. molec. Genet. 12, 175–183 (1986).

    CAS  Article  Google Scholar 

  29. 29

    Rheinwald, J.G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–344 (1975).

    CAS  Article  Google Scholar 

  30. 30

    Smith, K.J. & Ono, K. Monoclonal antibodies to factor IX: characterization and use in immunoassays for factor IX. Thromb. Res. 33, 211–224 (1984).

    CAS  Article  Google Scholar 

  31. 31

    Yoshioka, A., Giddings, J.C., Thomas, J.E., Fujimura, Y. & Bloom, A.R. Immunoassays of factor IX antigen using monoclonal antibodies. Br. J. Haematol. 59, 265–275 (1985).

    CAS  Article  Google Scholar 

  32. 32

    Handford, P.A., Winship, P.R. & Brownlee, G.G. Protein engineering of the propeptide of human factor IX. Protein Engineering 4, 319–323 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Lin, S.W., Smith, K.J., Welsch, D. & Stafford, D.W. Expression and characterization of human factor IX and factor IX-factor X chimeras in mouse C127 cells. J. biol. Chem. 265, 144–150 (1990).

    CAS  PubMed  Google Scholar 

  34. 34

    Austen, D.E.G. & Rhymes, I.L. Laboratory Manual of Blood Coagulation (Blackwell Scientific, Oxford, 1975).

    Google Scholar 

  35. 35

    Jacobs, J.P., Jones, C.M. & Bailie, J.P. Characteristics of a human diploid cell designated MRC-5. Nature 227, 168–170 (1970).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gerrard, A., Hudson, D., Brownlee, G. et al. Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet 3, 180–183 (1993). https://doi.org/10.1038/ng0293-180

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing