Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6

Abstract

Lung tumours represent a major cause of death in humans, and although smoking represents the main pathogenetic factor, inheritance also plays a part. However, the identification of possible predisposing genetic factors is difficult, because of their low penetrance. We took advantage of murine strains that are genetically susceptible or resistant to lung tumour development, to map murine genes associated with susceptibility to lung carcinogenesis. An F2 population of urethan–treated A/J × C3H/He mice was scored with 83 genetic markers. A chromosome 6 distal region, spanning 35 centiMorgans, contained a major lung tumour susceptibility locus. No other chromosomal region was significantly associated with lung tumour development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ooi, W.L., Elston, R.C., Chen, V.W., Bailey-Wilson, J.E. & Rothschild, H. Increased familial risk for lung cancer. J. natl. Cancer Inst. 76, 217–222 (1986).

    CAS  PubMed  Google Scholar 

  2. Law, M.R. Genetic predisposition to lung cancer. Br. J. Cancer 61, 195–206 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Joishy, S.K., Cooper, R.A. & Rowley, P.T. Alveolar cell carcinoma in identical twins. Ann. Int. Med. 87, 447–450 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Paul, S.M., Bacharach, B. & Goepp, C. A genetic influence on alveolar cell carcinoma. J. Surg. Oncol. 36, 249–252 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Biran, H., Goldstein, J. & Cohen, Y. A cancer-prone kindred with four siblings afflicted by aggressive poorly differentiated bronchogenic carcinoma. Lung Cancer 7, 345–353 (1991).

    Article  Google Scholar 

  6. Caporaso, N.E. et al. Lung cancer and the debrisoquine metabolic phenotype. J. natl. Cancer Inst. 82, 1264–1271 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Uematsu, F. et al. Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. Jpn. J. Cancer Res. 82, 254–256 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimkin, M.B. & Stoner, G.D. Lung tumors in mice: application to carcinogenesis bioassay. Adv. Cancer Res. 21, 1–58 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Malkinson, A.M. The genetic basis of susceptibility to lung tumors in mice. Toxicology 54, 241–271 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Dragani, T.A., Manenti, G. & Della Porta, G. Quantitative analysis of genetic susceptibility to liver and lung carcinogenesis in mice. Cancer Res. 51, 6299–6303 (1991).

    CAS  PubMed  Google Scholar 

  11. Malkinson, A.M., Nesbitt, M.N. & Skamene, E. Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/6J mice: Use of AXB and BXA recombinant inbred lines indicating a three-locus genetic model. J. natl. Cancer Inst. 75, 971–974 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Ryan, J., Barker, P.E., Nesbitt, M.N. & Ruddle, F.H. KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J. natl. Cancer Inst. 79, 1351–1357 (1987).

    CAS  PubMed  Google Scholar 

  13. Oomen, L.C., van der Valk, M.A. & Demant, P. MHC and non-MHC genes in lung tumor susceptibility in the mouse: implications for the study of the different lung tumortypes and their cell of origin. Exp. Lung Res. 17, 283–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Conover, W.J. & Iman, R.L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Statistician 35, 124–129 (1981).

    Google Scholar 

  15. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hillyard, A.L., Doolittle, D.P., Davisson, M.T. & Roderick, T.H. Locus map of mouse with comparative map points of human on mouse (Jackson Laboratory, Bar Harbor, Maine, 1992).

    Google Scholar 

  17. Love, J.M., Knight, A.M., McAleer, M.A. & Todd, J.A. Towards construction of a high resolution map of the mouse genome using PCR analyzed microsatellites. Nucl. Acids Res. 18, 4123–4130 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stowers, S.J., Glover, P.L., Reynolds, S.H., Boone, L.R., Maronpot, R.R. & Anderson, M.W. Activation of the K-ras protooncogene in lung tumors from rats and mice chronically exposed to tetranitromethane. Cancer Res. 47, 3212–3219 (1987).

    CAS  PubMed  Google Scholar 

  19. You, M., Candrian, U., Maronpot, R.R., Stoner, G.D. & Anderson, M.W. Activation of the Ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc. natn. Acad. Sci. U.S.A. 86, 3070–3074 (1989).

    Article  CAS  Google Scholar 

  20. Devereux, T.R., Anderson, M.W., Belinsky, S.A. Role of ras protooncogene activation in the formation of spontaneous and nitrosamine-induced lung tumors in the resistant C3H mouse. Carcinogenesis 12, 299–303 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Re, F.C. et al. Multiple molecular alterations in mouse lung tumors. Molec. Carcinogenesis 5, 155–160 (1992).

    Article  CAS  Google Scholar 

  22. You, M. et al. Parental bias of Ki-ras oncogenes detected in lung tumors from mouse hybrids. Proc. natn. Acad. Sci. U.S.A. 89, 5804–5808 (1992).

    Article  CAS  Google Scholar 

  23. Wright, S. The genetics of quantitative variability. in Quantitative Inheritance (eds Reeve, E.C.R. & Waddington C.H.) 5–41 (HMSO, London, 1952).

    Google Scholar 

  24. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Avner, P., Amar, L., Dandolo, L. & Guenet, J.L. Genetic analysis of the mouse using interspecific crosses. Trends Genet. 4, 18–23 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Copeland, N.G. & Jenkins, N.A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7, 113–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Weller, J.I., Soller, M. & Brody, T. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118, 329–339 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Paterson, A.M. et al. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127, 181–197 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ponder, B.A.J. Inherited predisposition to cancer. Trends Genet. 6, 213–218 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Pierotti, M.A. & Dragani, T.A. Genetics and cancer. Cur. Opin. Oncol. 4, 127–133 (1992).

    Article  CAS  Google Scholar 

  31. Nadeau, J.H. Maps of linkage and synteny homologies between mouse and man. Trends Genet. 5, 82–86 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Ryder-Cook, A.S. et al. Localization of the mdx mutation within the mouse distrophyn gene. EMBO J. 7, 3017–3021 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lyon, M.F., Peters, J., Glenister, P.H., Ball, S. & Wright, E. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc. natn. Acad. Sci. U.S.A. 87, 2433–2437 (1990).

    Article  CAS  Google Scholar 

  34. Travis, G.H. et al. The human retinal degeneration slow (RDS) gene: chromosome assignment and structure of the mRNA. Genomics 10, 733–739 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Birrer, M.J. & Minna, J.D. Genetic changes in the pathogenesis of lung cancer. Ann. Rev. Med. 40, 305–317 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Malkinson, A.M. Primary lung tumors in mice: an experimental manipulate model of human adenocarcinoma. Cancer Res. 52, 2670s–2676s (1992).

    CAS  PubMed  Google Scholar 

  38. SAS Institute Inc., SAS Users Guide: Statistics (SAS Institute, Gary, NC, 1988).

  39. Lander, E.S. et al. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gariboldi, M., Manenti, G., Canzian, F. et al. A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nat Genet 3, 132–136 (1993). https://doi.org/10.1038/ng0293-132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0293-132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing