Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allele specificity of DNA replication timing in the Angelman/Prader–Willi syndrome imprinted chromosomal region

Abstract

DNA replication within chromosome 15q11–q13, a region subject to genomic imprinting, was examined by fluorescence in situ hybridization. Asynchronous replication between homologues was observed in cells from normal individuals and in Prader–Willi (PWS) and Angelman syndrome (AS) patients with chromosome 15 deletions but not in PWS patients with maternal uniparental disomy. Opposite patterns of allele–specific replication timing between homologous loci were observed; paternal early/maternal late at D15S63, D15S10 and the γ–aminobutyric acid receptor β3 subunit gene (GABRB3); and maternal early/paternal late at the more distal γ–aminobutyric acid receptor α5 subunit gene (GABRA5). At the most distal locus examined, D15S12, both patterns of allele–specific replication timing were detected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nakamura, H., Morita, T. & Sato, C. Structural Organization of Replicon Domains during DMA Synthetic Phase in the Mammalian Nucleus. Exp. Cell Res. 165, 291–297 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Nakayasu, H. & Berezney, R. Mapping Replicational Sites in the Eucaryotic cell Nucleus. J. Cell Biol. 108, 1–11 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Fox, M.H., Arndt-Jovin, D.J., Jovin, T., Baumann, P.H. & Robert-Nicoud, M. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J. Cell Sci. 99, 247–253 (1991).

    PubMed  Google Scholar 

  4. O'Keefe, R.T., Henderson, S.C. & Spector, D.L. Dynamic Organization of DNA replication in Mammalian Cell Nuclei: Spatially and Temporally Defined Replication of Chromosome-specific-α-Satellite DNA sequences. J. Cell Biol. 116, 1095–1110 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Drouin, R., Lemieux, N. & Richer, C.-L. Analysis of DNA replication during S-phase by means of dynamic chromosome banding at high resolution. Chromosoma 99, 273–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Latt, S.A. Miorofluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. natn. Acad. Sci. U.S.A. 70, 3395–3399 (1973).

    Article  CAS  Google Scholar 

  7. Dutrillaux, B., Couturier, J., Richer, C.-L. & Viegas-Péquignot, E. Sequence of DNA replication in 227 R-and Q-bands of human chromosomes using a BrdU treatment. Chmmosoma 58, 51–61 (1976).

    Article  CAS  Google Scholar 

  8. Edenberg, H.J. & Huberman, J.A. Eucaryotic chromosome replication. Ann. Rev. Genet. 9, 245–284 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Hand, R. Eucaryotic DNA: Organization of the genome for replication. Cell 15, 317–325 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Priest, J.H., Heady, J.E. & Priest, R.E. Delayed onset of replication of human X chromosomes. J. Cell Biol. 35, 483–487 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Willard, H.F. & Latt, S.A. Analysis of deoxyribonucleic acid replication in human X chromosomes by fluorescence microscopy. Am. J. hum. Genet. 28, 213–227 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldman, M.A., Holmquist, G.P., Gray, M.C., Caston, L.A. & Nag, A. Replication timing of mammalian genes and middle repetitive sequences. Science 224, 686–692 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Hatton, K.S. et al. Replication program of active and inactive multigene families in mammalian cells. Molec. Cell. Biol. 8, 2149–2158 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dhar, V., Skoultchi, A.I. & Schildkraut, C.L. Activation and repression of a β-globin gene in cell hybrids is accompanied by a shift in its temporal replication. Molec. Cell. Biol. 9, 3524–3532 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izumikawa, Y., Naritomi, K. & Hirayama, K. Replication asynchrony between homologs 15q11.2: oytogenetic evidence for genomic imprinting. Hum. Genet. 87, 1–5 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Ledbetter, D.H. et al. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. New Engl. J. Med. 304, 325–329 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Butler, M.G. & Palmer, C.G. Parental origin of chromosome 15 deletion in Prader-Willi syndrome. Lancet 1, 1285–1286 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nicholls, R.D., Knoll, J.H.M., Butler, M.G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knoll, J.H.M. et al. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. med. Genet. 32, 285–290 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Malcolm, S. et al. Uniparental paternal disomy in Angelman's syndrome. Lancet 337, 694–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Wagstaff, J. et al. Maternal but not paternal transmission of 15q11–13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Ozcelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Selig, S., Okumura, K., Ward, D.C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wagstaff, J. et al. Localization of the gene encoding the GABAA receptor β3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am. J. hum. Genet. 49, 330–337 (1991).

    CAS  Google Scholar 

  26. Knoll, J.H.M. et al. FISH ordering of reference markers and of the gene for the α5 subunit of the γ-aminobutyric acid receptor (GABRA5) within the Angelman and Prader-Willi syndrome chromosomal regions. Hum. molec. Genet. 2, 183–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Sinnett, D. et al. High-resolution mapping of the gamma-aminobutyric acid receptor subunit β3 and α5 gene cluster on chromosome 15q11–q13 and localization of breakpoints in two Angelman syndrome patients. Am. J. hum. Genet. 52, 1216–1229 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gardner, J.M. et al. The mouse pink-eyed dilution gene: Association with human Prader-Willi and Angelman syndromes. Science 257, 1121–1124 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Left, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Wilii syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  Google Scholar 

  30. Cattanach, B.M. et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet. 2, 270–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Leffak, M. & James, C.D. Opposite replication polarity of the germ line c-myc gene in HeLa Cells compared with that of two Burkitt lymphoma cell lines. Molec. Cell. Biol. 9, 586–593 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fangman, W.L. & Brewer, B.J. A Question of Time: Replication Origins of Eukaryotic Chromosomes. Cell 71, 363–366 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Hamabe, J. et al. DNA deletion and its parental origin in Angelman syndrome patients. Am. J. med. Genet. 41, 64–68 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Saitoh, S. et al. Familial Angelman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor β3-subunit gene. Lancet 339, 366–367 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Schanberg, L.E., Fleenor, D.E., Kurtzberg, J., Haynes, B.F. & Kaufman, R.E. Isolation and characterization of the genomic human CD7 gene: Structural similarity with the murine Thy−1 gene. Proc. natn. Acad. Sci. U.S.A. 88, 603–607 (1991).

    Article  CAS  Google Scholar 

  36. Yunis, J.J. High resolution of human chromosomes. Science 191, 1268–1270 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Lawrence, J.B., Singer, R.H. & McNeil, J.A. Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249, 928–932 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoll, J., Cheng, SD. & Lalande, M. Allele specificity of DNA replication timing in the Angelman/Prader–Willi syndrome imprinted chromosomal region. Nat Genet 6, 41–46 (1994). https://doi.org/10.1038/ng0194-41

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0194-41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing