Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Arabidopsis arrives

Sequence analysis of the 125-Mb nuclear genome of the model plant Arabidopsis thaliana has uncovered 25,498 genes, representing about 11,000 gene families. Most of the gene families are similar to those found in other eukaryotes, but several hundred are unique to the plant kingdom. These include over 800 genes, primarily involved in photosynthetic activities, that seem to have been acquired from the cyanobacterial endosymbiont that evolved into the chloroplast. Among the unusual properties of the Arabidopsis genome are a fairly uniform gene density in all but centromeric and heterochromatic regions, numerous small and large genomic duplications, and other types of rearrangement. The genomic sequence now provides the raw material for comprehensive analyses of gene function in plants, and will provide powerful opportunities to compare and contrast with the genetic complements of animals, fungi, prokaryotes and other plant species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Salanoubat, M. et al. Nature 408, 820–823 (2000).

    Article  CAS  Google Scholar 

  2. Tabata, S. et al. Nature 408, 823–826 (2000).

    Article  CAS  Google Scholar 

  3. Theologis, A. et al. Nature 408, 816–820 (2000).

    Article  Google Scholar 

  4. The Arabidopsis Genome Initiative Nature 408, 796–815 (2000).

  5. Lin, X. et al. Nature 402, 761–768 (1999).

    Article  CAS  Google Scholar 

  6. Mayer, K. et al. Nature 402, 769–777 (1999).

    Article  CAS  Google Scholar 

  7. Meinke, D.W., Cherry, J.M., Dean, C., Rounsley, S.D. & Koorneef, M. Science 282, 662– 665 (1998).

    Article  CAS  Google Scholar 

  8. Copenhaver, G.P. et al. Science 286, 2468– 2474 (1999).

    Article  CAS  Google Scholar 

  9. The C. elegans Sequencing Consortium Science 282, 2012–2046 ( 1998).

  10. Adams, M.D. et al. Science 287, 2185– 2195 (2000).

    Article  Google Scholar 

  11. Blanc, G. et al. Plant Cell 12, 1093–1102 (2000).

    Article  CAS  Google Scholar 

  12. Vision, T.J., Brown, D.G. & Tanksley, S.D. Science (in press).

  13. O'Neill, C. & Bancroft, I. Plant J. 23, 233–243 (2000).

    Article  CAS  Google Scholar 

  14. Acarkan, A., Rossberg, M., Koch, M. & Schmidt, R. Plant J. 23, 55–62 (2000).

    Article  CAS  Google Scholar 

  15. Wang, D.Y.C. et al. Proc. Royal Soc. London B Biol Sci. 266, 63–71 (1999).

    Article  Google Scholar 

  16. Mewes, H.W. et al. Nature 387, 7–65 (1997).

    Article  Google Scholar 

  17. Kotani, H. & Tabata, S. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 151–171 ( 1998).

    Article  CAS  Google Scholar 

  18. Chory, J. et al. Plant Physiol. 123, 423– 426 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennetzen, J. Arabidopsis arrives. Nat Genet 27, 3–5 (2001). https://doi.org/10.1038/83726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/83726

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing