A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis

Abstract

A20 (TNFAIP3) is a protein that is involved in the negative feedback regulation of NF-κB signaling in response to specific proinflammatory stimuli in different cell types and has been suggested as a susceptibility gene for rheumatoid arthritis. To define the contribution of A20 to rheumatoid arthritis pathology, we generated myeloid-specific A20-deficient mice and show that specific ablation of Tnfaip3 in myeloid cells results in spontaneous development of a severe destructive polyarthritis with many features of rheumatoid arthritis. Myeloid-A20–deficient mice have high levels of inflammatory cytokines in their serum, consistent with a sustained NF-κB activation and higher TNF production by macrophages. Destructive polyarthritis in myeloid A20 knockout mice was TLR4-MyD88 and IL-6 dependent but was TNF independent. Myeloid A20 deficiency also promoted osteoclastogenesis in mice. Together, these observations indicate a critical and cell-specific function for A20 in the etiology of rheumatoid arthritis, supporting the idea of developing A20 modulatory drugs as cell-targeted therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A20myel-KO mice develop spontaneous destructive arthritis.
Figure 2: A20myel-KO mice have high serum titers of inflammatory and rheumatoid arthritis–associated cytokines.
Figure 3: The development of arthritis in A20myel-KO mice crucially depends on a TLR4-dependent signaling pathway.
Figure 4: Increased osteoclastogenesis from blood leukocytes of A20myel-KO mice.

References

  1. 1

    Coornaert, B., Carpentier, I. & Beyaert, R. A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 8217–8221 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Düwel, M. et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J. Immunol. 182, 7718–7728 (2009).

    Article  Google Scholar 

  6. 6

    Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Vereecke, L., Beyaert, R. & van Loo, G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383–391 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Vereecke, L. et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J. Exp. Med. 207, 1513–1523 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Turer, E.E. et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Taylor, P.C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Rothe, J. et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802 (1993).

    CAS  Article  Google Scholar 

  13. 13

    Huang, Q.Q. & Pope, R.M. The role of Toll-like receptors in rheumatoid arthritis. Curr. Rheumatol. Rep. 11, 357–364 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Hennessy, E.J., Parker, A.E. & O'Neill, L.A. Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293–307 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1– and IL-18–mediated function. Immunity 9, 143–150 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Aoki, S. et al. Role of enteric bacteria in the pathogenesis of rheumatoid arthritis: evidence for antibodies to enterobacterial common antigens in rheumatoid sera and synovial fluids. Ann. Rheum. Dis. 55, 363–369 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Yoshino, S., Sasatomi, E., Mori, Y. & Sagai, M. Oral administration of lipopolysaccharide exacerbates collagen-induced arthritis in mice. J. Immunol. 163, 3417–3422 (1999).

    CAS  PubMed  Google Scholar 

  18. 18

    Nieuwenhuis, E.E. et al. Oral antibiotics as a novel therapy for arthritis: evidence for a beneficial effect of intestinal Escherichia coli. Arthritis Rheum. 43, 2583–2589 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).

    CAS  PubMed  Google Scholar 

  20. 20

    McInnes, I.B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Wada, T., Nakashima, T., Hiroshi, N. & Penninger, J.M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566–1571 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Criscione, L.G. & St. Clair, E.W. Tumor necrosis factor-α antagonists for the treatment of rheumatic diseases. Curr. Opin. Rheumatol. 14, 204–211 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Plenge, R.M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Thomson, W. et al. Rheumatoid arthritis association at 6q23. Nat. Genet. 39, 1431–1433 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Rodríguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  Google Scholar 

  29. 29

    Onizawa, M. et al. Signaling pathway via TNF-α/NF-κB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G850–G859 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Starnes, H.F. et al. Anti-IL-6 monoclonal antibodies protect against lethal Escherichia coli infection and lethal tumor necrosis factor-α challenge in mice. J. Immunol. 145, 4185–4191 (1990).

    CAS  PubMed  Google Scholar 

  31. 31

    Geboes, L. et al. Freund's complete adjuvant induces arthritis in mice lacking a functional interferon-γ receptor by triggering tumor necrosis factor α-driven osteoclastogenesis. Arthritis Rheum. 56, 2595–2607 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Förster for donating the LysM-Cre transgenic mice. We thank H. Heremans for providing us with the IL-6 and control antibodies. We thank T. Hochepied for transgenic services, P. Bogaert and E. Parthoens for technical help, A. Bredan for critical reading of the manuscript and D. Huyghebaert and L. Bellen for animal care. L.V. and J.M. are PhD fellows with the Instituut voor Innovatie door Wetenschap en Technologie (IWT), and J.M. is also supported by an Emmanuel van der Schueren award. C.M.G., L.G. and P.J. are PhD fellows with the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO). G.v.L. is supported, as a postdoctoral researcher, by the FWO, by an FWO Odysseus Grant and by the Charcot Foundation. M.K. is supported by an Intra European fellowship from the Marie Curie Actions. M.P. is supported by an FP7 EC program grant Masterswitch (EC-223404). B.N.L. is supported by an FWO Odysseus grant, a European Research Council Starting grant and the Group-ID Multidisciplinary Research Partnership grant of Ghent University. Work in the lab of R.B. and G.v.L. is further supported by research grants from the Interuniversity Attraction Poles program (IAP6/18), the FWO, the Belgian Foundation against Cancer, the Strategic Basis Research program of the IWT, the Centrum voor Gezwelziekten, the Hercules Foundation, and the Concerted Research Actions (GOA) and Group-ID MRP of Ghent University.

Author information

Affiliations

Authors

Contributions

M.M., P.J., J.M., E.V., M.K., M.S., L.G., E.L., C.M.G., L.V., S.S. and G.v.L. performed the experiments. M.M., P.J., C.M.G., S.S., P.M., B.N.L., M.P., D.E., R.B. and G.v.L. analyzed the data. Y.C., L.B., P.M., M.S.-S. and M.P. provided materials. D.E., R.B. and G.v.L. provided ideas and coordinated the project. R.B. and G.v.L. wrote the manuscript.

Corresponding authors

Correspondence to Rudi Beyaert or Geert van Loo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–8. (PDF 2880 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matmati, M., Jacques, P., Maelfait, J. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 43, 908–912 (2011). https://doi.org/10.1038/ng.874

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing