A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL)

  • A Corrigendum to this article was published on 27 July 2011

Abstract

The importance of individual microRNAs (miRNAs) has been established in specific cancers. However, a comprehensive analysis of the contribution of miRNAs to the pathogenesis of any specific cancer is lacking. Here we show that in T-cell acute lymphoblastic leukemia (T-ALL), a small set of miRNAs is responsible for the cooperative suppression of several tumor suppressor genes. Cross-comparison of miRNA expression profiles in human T-ALL with the results of an unbiased miRNA library screen allowed us to identify five miRNAs (miR-19b, miR-20a, miR-26a, miR-92 and miR-223) that are capable of promoting T-ALL development in a mouse model and which account for the majority of miRNA expression in human T-ALL. Moreover, these miRNAs produce overlapping and cooperative effects on tumor suppressor genes implicated in the pathogenesis of T-ALL, including IKAROS (also known as IKZF1), PTEN, BIM, PHF6, NF1 and FBXW7. Thus, a comprehensive and unbiased analysis of miRNA action in T-ALL reveals a striking pattern of miRNA-tumor suppressor gene interactions in this cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comprehensive study of oncogenic miRNAs in T-ALL.
Figure 2: Pooled library screen for oncogenic miRNAs.
Figure 3: Candidate miRNAs act as oncogenes in a mouse T-ALL model.
Figure 4: miRNAs regulate the expression of tumor suppressor genes in mouse T-ALL.
Figure 5: Individual and cooperative miRNA effects on T-ALL suppressor genes.

Change history

  • 11 July 2011

    In the version of this article initially published, the name of author Manu Setty was incorrectly spelled as Manu Setti. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Aifantis, I., Raetz, E. & Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat. Rev. Immunol. 8, 380–390 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Weng, A.P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Balgobind, B.V. et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 111, 4322–4328 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Van Vlierberghe, P. et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 338–342 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Kleppe, M. et al. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 530–535 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Dail, M. et al. Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proc. Natl. Acad. Sci. USA 107, 5106–5111 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Winandy, S., Wu, P. & Georgopoulos, K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83, 289–299 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Marçais, A. et al. Genetic inactivation of Ikaros is a rare event in human T-ALL. Leuk. Res. 34, 426–429 (2010).

    Article  Google Scholar 

  10. 10

    Sun, L. et al. Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 5, 2112–2120 (1999).

    CAS  PubMed  Google Scholar 

  11. 11

    Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    CAS  Article  Google Scholar 

  12. 12

    O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Thompson, B.J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Landais, S., Landry, S., Legault, P. & Rassart, E. Oncogenic potential of the miR-106–363 cluster and its implication in human T-cell leukemia. Cancer Res. 67, 5699–5707 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Mavrakis, K.J. et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat. Cell Biol. 12, 372–379 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Mestdagh, P. et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 10, R64 (2009).

    Article  Google Scholar 

  21. 21

    Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Evan, G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA 103, 18261–18266 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Weng, A.P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Klinakis, A. et al. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc. Natl. Acad. Sci. USA 103, 9262–9267 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Beverly, L.J. & Capobianco, A.J. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 3, 551–564 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Inuzuka, H. et al. SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Wertz, I.E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Schmitt, C.A., Rosenthal, C.T. & Lowe, S.W. Genetic analysis of chemoresistance in primary murine lymphomas. Nat. Med. 6, 1029–1035 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Wendel, H.G. et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 21, 3232–3237 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Maser, R.S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Van de Walle, I. et al. An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells. Blood 113, 2988–2998 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).

    Article  Google Scholar 

  35. 35

    Mestdagh, P. et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res. 36, e143 (2008).

    Article  Google Scholar 

  36. 36

    Mavrakis, K.J. et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev. 22, 2178–2188 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C. & Thompson, C.B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276, 12041–12048 (2001).

    CAS  Article  Google Scholar 

  38. 38

    He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Pear, W.S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Wendel, H.G. et al. Survival signaling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Huse, J.T. et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 23, 1327–1337 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Zuurbier, L. et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia 24, 2014–2022 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Asnafi, V. et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 113, 3918–3924 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A.J. Capobianco, L. Beverly, A.A. Ferrando, J. Cools and W. Pear for reagents. The Memorial Sloan Kettering (MSK) animal facility and Research Animal Resource Center (RARC), A. Viale of the MSK Genomics Core, H. Zhao of Computational Biology (cBIO) program, K. Huberman of the Geoffrey Beene Translational Oncology Core Facility and J. Schatz for editorial advice. This work is supported by grants from the National Cancer Institute (NCI) (R01-CA142798-01) (H.-G.W.), and a P30 supplemental award (H.-G.W.), the Louis V. Gerstner Foundation (H.-G.W.), the William Lawrence and Blanche Hughes (WLBH) Foundation (H.-G.W.), the Society of MSKCC (H.-G.W.), the Geoffrey Beene Foundation (H.-G.W.), and May & Samuel Rudin Foundation Award (H.-G.W.); W.H. Goodwin and A. Goodwin and the Commonwealth Foundation for Cancer Research, The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center (H.-G.W.), the Fund for Scientific Research (FWO) Flanders (postdoctoral grants to T.T. and P.V.V., PhD grant to J.V.d.M., P.V.V. is a Senior Clinical Investigator of FWO-Vlaanderen, Odysseus program grant to T.T., and project grants G.0198.08 and G.0869.10N to F.S.); the GOA-UGent (grant no. 12051203); Stichting tegen Kanker, FOD ALL the Children Cancer Fund Ghent (F.S.); and the Belgian Program of Interuniversity Poles of Attraction and the Belgian Foundation Against Cancer.

Author information

Affiliations

Authors

Contributions

K.J.M., A.L.W. and X.L. performed the screen, mouse model and data analysis. J.V.d.M. and P.V.V. performed miRNA profiling on T-ALL samples. E.M. and P.R. performed studies on miR-223 and FBXW7. T.T. performed cell sorting and miRNA profiling. P.V. and E.D. performed genetic analyses on T-ALL samples. Y.B. was the co-supervisor of the miRNA profiling project on childhood ALLs and integrated clinical data management. A.A.K., M.S., C.S.L. and N.D.S. performed computational analyses. F.S. supervised the miRNA expression analyses. H.G.W. designed the study and wrote the paper.

Corresponding author

Correspondence to Hans-Guido Wendel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 2–16. (PDF 2785 kb)

Supplementary Table 1

miRNA expression in primary T-ALL samples (XLSX 190 kb)

Supplementary Table 5

miRNA expression in T-ALL cell lines (XLSX 225 kb)

Supplementary Table 7

miRNA expression in normal T-cells and progenitor populations (XLSX 145 kb)

Supplementary Table 8

Comparative analysis of miRNA expression between normal T-cells and progenitor populations and human T-ALL samples (XLSX 76 kb)

Supplementary Table 9

Computational target prediction (a: by total context score; b: by number of 7- and 8-mer sites) (XLSX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mavrakis, K., Van Der Meulen, J., Wolfe, A. et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 43, 673–678 (2011). https://doi.org/10.1038/ng.858

Download citation

Further reading