Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis

An Erratum to this article was published on 01 April 2010

This article has been updated

Abstract

Glial cell line–derived neurotrophic factor signaling through the Ret receptor tyrosine kinase is crucial for ureteric bud branching morphogenesis during kidney development, yet few of the downstream genes are known. Here we show that the ETS transcription factors Etv4 and Etv5 are positively regulated by Ret signaling in the ureteric bud tips. Mice lacking both Etv4 alleles and one Etv5 allele show either renal agenesis or severe hypodysplasia, whereas kidney development fails completely in double homozygotes. We identified several genes whose expression in the ureteric bud depends on Etv4 and Etv5, including Cxcr4, Myb, Met and Mmp14. Thus, Etv4 and Etv5 are key components of a gene network downstream of Ret that promotes and controls renal branching morphogenesis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Screen for genes upregulated by GDNF-Ret signaling in the ureteric bud.
Figure 2: Similar expression patterns of Etv4 and Etv5 during kidney development.
Figure 3: GDNF-Ret signaling regulates Etv4 and Etv5 expression in ureteric bud tips.
Figure 4: Severe renal developmental defects in newborn mice with compound Etv4 and Etv5 mutations, including two different Etv5 knockout alleles.
Figure 5: Ureteric bud branching defects in Etv4−/−; Etv5+/− compound mutants.
Figure 6: Gene expression in ureteric bud tips of Etv4−/−; Etv5+/− compound mutant kidneys.
Figure 7: Reduced Mmp14 expression in Etv4−/−; Etv5+/− compound mutant and Ret-hypomorphic kidneys.

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 05 February 2010

    In the version of this article initially published, the sentence under Table 1 on p. 1296 should stop after the words “and 430A arrays,” and the words “or >3 if represented on only one array” should be removed. In addition, on p. 1298, the second parenthesis after “Tg(Hoxb7-myrVenus)” is missing. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Costantini, F. Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74, 402–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Dressler, G.R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22, 509–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Saxen, L. Organogenesis of the Kidney (Cambridge University Press, Cambridge, UK, 1987).

  5. Hoy, W.E. et al. Nephron number, glomerular volume, renal disease and hypertension. Curr. Opin. Nephrol. Hypertens. 17, 258–265 (2008).

    Article  PubMed  Google Scholar 

  6. Takahashi, M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 12, 361–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Costantini, F. & Shakya, R. GDNF/Ret signaling and the development of the kidney. Bioessays 28, 117–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Skinner, M.A., Safford, S.D., Reeves, J.G., Jackson, M.E. & Freemerman, A.J. Renal aplasia in humans is associated with RET mutations. Am. J. Hum. Genet. 82, 344–351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharrocks, A.D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Livet, J. et al. ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools. Neuron 35, 877–892 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, C. et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 436, 1030–1034 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brent, A.E. & Tabin, C.J. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 131, 3885–3896 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Qiao, J., Sakurai, H. & Nigam, S.K. Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc. Natl. Acad. Sci. USA 96, 7330–7335 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pepicelli, C.V., Kispert, A., Rowitch, D.H. & McMahon, A.P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev. Biol. 192, 193–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. de Graaff, E. et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 15, 2433–2444 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Basson, M.A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Haase, G. et al. GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools. Neuron 35, 893–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Castellone, M.D. et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 23, 5958–5967 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe, T. et al. Characterization of gene expression induced by RET with MEN2A or MEN2B mutation. Am. J. Pathol. 161, 249–256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colucci-D'Amato, G.L. et al. Abrogation of nerve growth factor-induced terminal differentiation by ret oncogene involves perturbation of nuclear translocation of ERK. J. Biol. Chem. 275, 19306–19314 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Michael, L. & Davies, J.A. Pattern and regulation of cell proliferation during murine ureteric bud development. J. Anat. 204, 241–255 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Majumdar, A., Vainio, S., Kispert, A., McMahon, J. & McMahon, A.P. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 3175–3185 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Mucenski, M.L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Shi, M., Morris, S.M. Jr., Zoghbi, H., Porter, C.W. & O'Brien, W.E. Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol. Cell. Biol. 21, 811–813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buj-Bello, A., Biancalana, V., Moutou, C., Laporte, J. & Mandel, J.L. Identification of novel mutations in the MTM1 gene causing severe and mild forms of X-linked myotubular myopathy. Hum. Mutat. 14, 320–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Chotteau-Lelievre, A. et al. PEA3 transcription factors are expressed in tissues undergoing branching morphogenesis and promote formation of duct-like structures by mammary epithelial cells in vitro. Dev. Biol. 259, 241–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Firnberg, N. & Neubuser, A. FGF signaling regulates expression of Tbx2, Erm, Pea3, and Pax3 in the early nasal region. Dev. Biol. 247, 237–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y., Jiang, H., Crawford, H.C. & Hogan, B.L. Role for ETS domain transcription factors Pea3/Erm in mouse lung development. Dev. Biol. 261, 10–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Chi, L. et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development 131, 3345–3356 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Ohuchi, H. et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 277, 643–649 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, H. et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev. Biol. 276, 403–415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jain, S., Encinas, M., Johnson, E.M. Jr. & Milbrandt, J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 20, 321–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jijiwa, M. et al. A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol. Cell. Biol. 24, 8026–8036 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fisher, C.E., Michael, L., Barnett, M.W. & Davies, J.A. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128, 4329–4338 (2001).

    CAS  PubMed  Google Scholar 

  36. Tang, M.J., Cai, Y., Tsai, S.J., Wang, Y.K. & Dressler, G.R. Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev. Biol. 243, 128–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Chi, X., Hadjantonakis, A.K., Wu, Z., Hyink, D. & Costantini, F. A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis 47, 61–66 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishibe, S. et al. Met and the epidermal growth factor receptor act cooperatively to regulate final nephron number and maintain collecting duct morphology. Development 136, 337–345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanwar, Y.S. et al. Role of membrane-type matrix metalloproteinase 1 (MT-1-MMP), MMP-2, and its inhibitor in nephrogenesis. Am. J. Physiol. 277, F934–F947 (1999).

    CAS  PubMed  Google Scholar 

  40. Pohl, M., Sakurai, H., Bush, K.T. & Nigam, S.K. Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Am. J. Physiol. Renal Physiol. 279, F891–F900 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Koshikawa, N. et al. Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB J. 18, 364–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Helmbacher, F. et al. Met signaling is required for recruitment of motor neurons to PEA3-positive motor pools. Neuron 39, 767–777 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Izumiyama, Y. et al. E1AF expression is closely correlated with malignant phenotype of tongue squamous cell carcinoma through activation of MT1-MMP gene promoters. Oncol. Rep. 13, 715–720 (2005).

    CAS  PubMed  Google Scholar 

  44. Vu, T.H. & Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 14, 2123–2133 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Oblander, S.A. et al. Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. Dev. Biol. 277, 255–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Meyer, T.N. et al. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev. Biol. 275, 44–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Toth, M. et al. Complex pattern of membrane type 1 matrix metalloproteinase shedding. Regulation by autocatalytic cells surface inactivation of active enzyme. J. Biol. Chem. 277, 26340–26350 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Eswarakumar, V.P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Qiao, J. et al. Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech. Dev. 109, 123–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Schier, A.F. Chemokine signaling: rules of attraction. Curr. Biol. 13, R192–R194 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Maroni, P., Bendinelli, P., Matteucci, E. & Desiderio, M.A. HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis 28, 267–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Shakya, R., Watanabe, T. & Costantini, F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev. Cell 8, 65–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takabatake, Y. et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J. Am. Soc. Nephrol. 20, 1714–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramsay, R.G. & Gonda, T.J. MYB function in normal and cancer cells. Nat. Rev. Cancer 8, 523–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Michael, L., Sweeney, D.E. & Davies, J.A. The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system. J. Anat. 210, 89–97 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, L.G., Liu, X.M., Li, Z.R., Denstman, S. & Bloch, A. Differential binding of nuclear c-ets-1 protein to an intron I fragment of the c-myb gene in growth versus differentiation. Cell Growth Differ. 5, 1243–1251 (1994).

    CAS  PubMed  Google Scholar 

  58. Sullivan, J., Feeley, B., Guerra, J. & Boxer, L.M. Identification of the major positive regulators of c-myb expression in hematopoietic cells of different lineages. J. Biol. Chem. 272, 1943–1949 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Gambarotta, G. et al. Ets up-regulates MET transcription. Oncogene 13, 1911–1917 (1996).

    CAS  PubMed  Google Scholar 

  60. Woolf, A.S. et al. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J. Cell Biol. 128, 171–184 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Santos, O.F. et al. Involvement of hepatocyte growth factor in kidney development. Dev. Biol. 163, 525–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. de Launoit, Y. et al. The Ets transcription factors of the PEA3 group: transcriptional regulators in metastasis. Biochim. Biophys. Acta 1766, 79–87 (2006).

    CAS  PubMed  Google Scholar 

  63. Li, C. & Hung Wong, W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2, RESEARCH0032 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Min, H. et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12, 3156–3161 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Weaver, M., Dunn, N.R. & Hogan, B.L. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127, 2695–2704 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Simonet (Amgen) for Fgf10−/− mice, K. Murphy (Washington University) for Etv5tm1Kmm mice, L. Williams and Z. Wu for technical assistance and N. Kurpios and C. Mendelsohn for critical comments on the manuscript. This work was supported by grant DK55388 (to F.C. and J.B.) and grant DK075578 (to F.C.) and by fellowships from the National Kidney Foundation (to C.C.), the American Heart Association (to X.C.) and the Sigrid Juselius Foundation and Finnish Cultural Foundation (to S.K.).

Author information

Authors and Affiliations

Authors

Contributions

B.C.L., C.C., X.C. and S.K. designed, conducted and interpreted experiments. R.K. conducted experiments. C.M.B., M.H., S.J., N.A. and M.T. contributed mutant kidneys. S.A., L.M. and J.H. generated the Etv5lacZ and Etv4lacZ mice. K.M.S.-O. and J.B. assisted with microarray analyses. V.D. analyzed renal histopathology. F.C. conceived and directed the project and wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Frank Costantini.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–5 (PDF 438 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, B., Cebrian, C., Chi, X. et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41, 1295–1302 (2009). https://doi.org/10.1038/ng.476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing