Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The establishment of gene silencing at single-cell resolution

Abstract

The establishment of silencing in Saccharomyces cerevisiae is similar to heterochromatin formation in multicellular eukaryotes. Previous batch culture studies determined that the de novo establishment of silencing initiates during S phase and continues for up to five cell divisions for completion. To track silencing phenotypically, we developed an assay that introduces Sir3 protein into individual sir3Δ mutant cells synchronously and then detects the onset of silencing with single-cell resolution. Silencing was completed within the first one to two cell divisions in most cells queried. Moreover, we uncovered unexpected complexity in the contributions of a histone acetyltransferase (Sas2), two histone methytransferases (Dot1 and Set1) and one histone demethylase (Jhd2) to the dynamics of silencing. Our findings showed that removal of methyl modifications at H3K4 and H3K79 were important steps in silent chromatin formation and that Jhd2 and Set1 had competing roles in the process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A pedigree assay to measure the establishment of silencing as a function of cell divisions.
Figure 2: Strain 1 (JRY88828) and strain 2 (JRY8829) fusion products established silencing after one to three cell divisions.
Figure 3: Sir3-overexpression studies.
Figure 4: Silencing of cells with mutations in chromatin modifying enzymes.
Figure 5: Loss of DOT1 enhanced the sir1Δ loss-of-silencing phenotype.

Similar content being viewed by others

References

  1. Rine, J., Strathern, J.N., Hicks, J.B. & Herskowitz, I. A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 93, 877–901 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9–22 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klar, A.J., Fogel, S. & Macleod, K. MAR1-a Regulator of the HMa and HMalpha Loci in Saccharomyces cerevisiae. Genetics 93, 37–50 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Haber, J.E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Brand, A.H., Breeden, L., Abraham, J., Sternglanz, R. & Nasmyth, K. Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41, 41–48 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Rusche, L.N., Kirchmaier, A.L. & Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72, 481–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Rusche, L.N., Kirchmaier, A.L. & Rine, J. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2207–2222 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brand, A.H., Micklem, G. & Nasmyth, K. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation. Cell 51, 709–719 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Triolo, T. & Sternglanz, R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381, 251–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Moretti, P., Freeman, K., Coodly, L. & Shore, D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8, 2257–2269 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S.M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Hoppe, G.J. et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22, 4167–4180 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Imai, S., Armstrong, C., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Landry, J., Slama, J.T. & Sternglanz, R. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Biochem. Biophys. Res. Commun. 278, 685–690 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Carmen, A.A., Milne, L. & Grunstein, M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J. Biol. Chem. 277, 4778–4781 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, F., Zhang, Q., Zhang, K., Xie, W. & Grunstein, M. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Mol. Cell 27, 890–900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suka, N., Luo, K. & Grunstein, M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat. Genet. 32, 378–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Katan-Khaykovich, Y. & Struhl, K. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J. 24, 2138–2149 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, B., Britton, J. & Kirchmaier, A.L. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae. J. Mol. Biol. 381, 826–844 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Miller, A.M. & Nasmyth, K.A. Role of DNA replication in the repression of silent mating type loci in yeast. Nature 312, 247–251 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Kirchmaier, A.L. & Rine, J. DNA replication-independent silencing in Saccharomyces cerevisiae. Science 291, 646–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lau, A., Blitzblau, H. & Bell, S.P. Cell-cycle control of the establishment of mating-type silencing in Saccharomyces cerevisiae. Genes Dev. 16, 2935–2945 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Y.C., Cheng, T.H. & Gartenberg, M.R. Establishment of transcriptional silencing in the absence of DNA replication. Science 291, 650–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Singer, M.S. et al. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150, 613–632 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. van Leeuwen, F., Gafken, P.R. & Gottschling, D.E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Lacoste, N., Utley, R.T., Hunter, J.M., Poirier, G.G. & Cote, J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277, 30421–30424 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Ng, H.H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ng, H.H., Ciccone, D.N., Morshead, K.B., Oettinger, M.A. & Struhl, K. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc. Natl. Acad. Sci. USA 100, 1820–1825 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martino, F. et al. Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. Mol. Cell 33, 323–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Fingerman, I.M., Li, H.C. & Briggs, S.D. A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway. Genes Dev. 21, 2018–2029 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altaf, M. et al. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol. Cell 28, 1002–1014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, C.L. et al. Single-nucleosome mapping of histone modifications in Saccharomyces cerevisiae. PLoS Biol. 3, e328 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. USA 98, 12902–12907 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Briggs, S.D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dehé, P.-M. & Géli, V. The multiple faces of Set1. Biochem. Cell Biol. 84, 536–548 (2006).

    Article  PubMed  Google Scholar 

  39. Ingvarsdottir, K. et al. Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 7856–7864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santos-Rosa, H., Bannister, A.J., Dehe, P.M., Geli, V. & Kouzarides, T. Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin. J. Biol. Chem. 279, 47506–47512 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Fingerman, I.M., Wu, C.L., Wilson, B.D. & Briggs, S.D. Global loss of Set1-mediated H3 Lys4 trimethylation is associated with silencing defects in Saccharomyces cerevisiae. J. Biol. Chem. 280, 28761–28765 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Liang, G., Klose, R.J., Gardner, K.E. & Zhang, Y. Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase. Nat. Struct. Mol. Biol. 14, 243–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Klose, R., Kallin, E. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Seward, D.J. et al. Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nat. Struct. Mol. Biol. 14, 240–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Tu, S. et al. Identification of histone demethylases in Saccharomyces cerevisiae. J. Biol. Chem. 282, 14262–14271 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, E.Y., Zawadzki, K.A. & Broach, J.R. Single-cell observations reveal intermediate transcriptional silencing states. Mol. Cell 23, 219–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Ehrenhofer-Murray, A.E., Rivier, D.H. & Rine, J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145, 923–934 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van Welsem, T. et al. Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. Mol. Cell. Biol. 28, 3861–3872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lynch, P.J. & Rusche, L.N. A silencer promotes the assembly of silenced chromatin independently of recruitment. Mol. Cell. Biol. 29, 43–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Bantignies, F. & Cavalli, G. Cellular memory and dynamic regulation of polycomb group proteins. Curr. Opin. Cell Biol. 18, 275–283 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Strathern, J.N. & Herskowitz, I. Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17, 371–381 (1979).

    Article  CAS  PubMed  Google Scholar 

  54. Hochstrasser, M. & Varshavsky, A. In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell 61, 697–708 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Liou, G.G., Tanny, J.C., Kruger, R.G., Walz, T. & Moazed, D. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 121, 515–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Karras, G.I. et al. The macro domain is an ADP-ribose binding module. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pillus, L. & Rine, J. Epigenetic inheritance of transcriptional states in Saccharomyces cerevisiae. Cell 59, 637–647 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. R Core Development Team. R: A Language and Environment for Statistical Computinghttp://www.r-project.org/〉 (2008).

  61. Friendly, M. Mosaic displays for multi-way contingency tables. J. Am. Stat. Assoc. 89, 190–200 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Li, C. Hale, O. Zill, M. Gartenberg and K. Struhl for helpful contributions and wonderful discussions. Also, thanks to O. Zill, J. Kuei, J. Babiarz and L. Lombardi for strains and reagents. Finally, thanks to J. O for her hard work and contributions. This work was supported by a National Science Foundation Pre-Doctoral Fellowship to E.A. Osborne and by grants from the National Institute of Health (GM31105 to J.R.).

Author information

Authors and Affiliations

Authors

Contributions

E.A.O. and J.R. conceived of and designed this study. E.A.O. conducted the study. E.A.O. and S.D. performed statistical analysis. E.A.O. wrote the manuscript with contributions from J.R. and S.D. E.A.O. and J.R. obtained funding for the study.

Corresponding author

Correspondence to Jasper Rine.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, E., Dudoit, S. & Rine, J. The establishment of gene silencing at single-cell resolution. Nat Genet 41, 800–806 (2009). https://doi.org/10.1038/ng.402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing