Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconstructing the genome of the most recent common ancestor of flowering plants

Abstract

We describe here the reconstruction of the genome of the most recent common ancestor (MRCA) of modern monocots and eudicots, accounting for 95% of extant angiosperms, with its potential repertoire of 22,899 ancestral genes conserved in present-day crops. The MRCA provides a starting point for deciphering the reticulated evolutionary plasticity between species (rapidly versus slowly evolving lineages), subgenomes (pre- versus post-duplication blocks), genomic compartments (stable versus labile loci), genes (ancestral versus species-specific genes) and functions (gained versus lost ontologies), the key mutational forces driving the success of polyploidy in crops. The estimation of the timing of angiosperm evolution, based on MRCA genes, suggested that this group emerged 214 million years ago during the late Triassic era, before the oldest recorded fossil. Finally, the MRCA constitutes a unique resource for scientists to dissect major agronomic traits in translational genomics studies extending from model species to crops.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Most recent common ancestor of modern flowering plants.
Figure 2: Partitioned evolutionary plasticity since the MRCA.

References

  1. 1

    Bell, C.D., Soltis, D.E. & Soltis, P.S. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 97, 1296–1303 (2010).

    Article  Google Scholar 

  2. 2

    Magallón, S. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst. Biol. 59, 384–399 (2010).

    PubMed  Article  Google Scholar 

  3. 3

    Friis, E.M., Pedersen, R. & Crane, P.R. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeocl. Palaeoeco. 232, 251–293 (2006).

    Article  Google Scholar 

  4. 4

    Friis, E.M., Pedersen, K.R. & Crane, P.R. Diversity in obscurity: fossil flowers and the early history of angiosperms. Phil. Trans. R. Soc. Lond. B 365, 369–382 (2010).

    Article  Google Scholar 

  5. 5

    Soltis, D.E., Bell, C.D., Kim, S. & Soltis, P.S. Origin and early evolution of angiosperms. Ann. NY Acad. Sci. 1133, 3–25 (2008).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Doyle, J.A. Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet. Sci. 40, 301–326 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

  8. 8

    Salse, J. Ancestors of modern plant crops. Curr. Opin. Plant Biol. 30, 134–142 (2016).

    PubMed  Article  Google Scholar 

  9. 9

    International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  CAS  Google Scholar 

  10. 10

    International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768 (2010).

  11. 11

    Paterson, A.H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Singh, R. et al. Oil palm genome sequence reveals divergence of interfertile species in Old and New Worlds. Nature 500, 335–339 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    International Peach Genome Initiative. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45, 487–494 (2013).

  17. 17

    Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Paterson, A.H., Bowers, J.E. & Chapman, B.A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. USA 101, 9903–9908 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Salse, J. et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20, 11–24 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Tang, H., Bowers, J.E., Wang, X. & Paterson, A.H. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc. Natl. Acad. Sci. USA 107, 472–477 (2010).

    CAS  Article  Google Scholar 

  21. 21

    D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Jiao, Y., Li, J., Tang, H. & Paterson, A.H. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26, 2792–2802 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science 342, 1241089 (2013).

  24. 24

    Murat, F. et al. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops. Genome Biol. Evol. 7, 735–749 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Murat, F. et al. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol. Evol. 6, 12–33 (2014).

    PubMed  Article  Google Scholar 

  26. 26

    Banks, J.A. et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960–963 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Murat, F. et al. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 20, 1545–1557 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433–453 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Schnable, J.C., Springer, N.M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl. Acad. Sci. USA 108, 4069–4074 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Woodhouse, M.R. et al. Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc. Natl. Acad. Sci. USA 111, 5283–5288 (2014).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Cheng, F. et al. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One 7, e36442 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Murat, F. et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 10, 262 (2015).

    Article  CAS  Google Scholar 

  33. 33

    Thomas, B.C., Pedersen, B. & Freeling, M. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 16, 934–946 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Pont, C. et al. Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J. 76, 1030–1044 (2013).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Renny-Byfield, S., Gong, L., Gallagher, J.P. & Wendel, J.F. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol. Biol. Evol. 32, 1063–1071 (2015).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Paterson, A.H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427 (2012).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Schnable, P.S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  39. 39

    Prasad, V., Strömberg, C.A., Alimohammadian, H. & Sahni, A. Dinosaur coprolites and the early evolution of grasses and grazers. Science 310, 1177–1180 (2005).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Drinnan, A.N., Crane, P.R. & Hoot, S.B. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Plant Syst. Evol. 8, 93–122 (1994).

    Google Scholar 

  41. 41

    Hochuli, P.A. & Feist-Burkhardt, S. Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Front. Plant Sci. 4, 344 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Hedges, S.B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Crane, P.R., Herendeen, P. & Friis, E.M. Fossils and plant phylogeny. Am. J. Bot. 91, 1683–1699 (2004).

    PubMed  Article  Google Scholar 

  44. 44

    Zeng, L. et al. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5, 4956 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Smith, S.A., Beaulieu, J.M. & Donoghue, M.J. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl. Acad. Sci. USA 107, 5897–5902 (2010).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Magallón, S.A. & Sanderson, M.J. Angiosperm divergence times: the effect of genes, codon positions, and time constraints. Evolution 59, 1653–1670 (2005).

    PubMed  Article  Google Scholar 

  47. 47

    Labandeira, C.C. & Eble, G.J. in Gondwana Alive: Biodiversity and the Evolving Terrestrial Biosphere (eds. John, A., de Wit, M. & Thackeray, F.) (Witwatersrand University Press, 2000).

  48. 48

    Strömberg, C.A.E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).

    Article  CAS  Google Scholar 

  49. 49

    Šmarda, P. et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. USA 111, E4096–E4102 (2014).

    PubMed  Article  CAS  Google Scholar 

  50. 50

    Vanneste, K., Maere, S. & Van de Peer, Y. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Phil. Trans. R. Soc. Lond. B 369, 1648 (2014).

    Article  Google Scholar 

  51. 51

    Moghe, G.D. & Shiu, S.H. The causes and molecular consequences of polyploidy in flowering plants. Ann. NY Acad. Sci. 1320, 16–34 (2014).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Ohno, S. Evolution by Gene Duplication (Springer, 1970).

  53. 53

    Scannell, D.R., Byrne, K.P., Gordon, J.L., Wong, S. & Wolfe, K.H. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440, 341–345 (2006).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Aury, J.M. et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178 (2006).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Cañestro, C. in Polyploidy and Genome Evolution (eds. Soltis, M.S. & Soltis, D.E.) 309–339 (Springer, 2012).

  56. 56

    Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Renny-Byfield, S. & Wendel, J.F. Doubling down on genomes: polyploidy and crop plants. Am. J. Bot. 101, 1711–1725 (2014).

    PubMed  Article  Google Scholar 

  58. 58

    Pont, C. & Salse, J. Wheat paleohistory created asymmetrical genomic evolution. Curr. Opin. Plant Biol. 6, 29–37 (2017).

    Article  Google Scholar 

  59. 59

    Salse, J. in Advances in Genomics of Plant Genetic Resources 131–172 (Springer Verlag, 2013).

  60. 60

    Li, L., Stoeckert, C.J. Jr. & Roos, D.S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Salse, J., Abrouk, M., Murat, F., Quraishi, U.M. & Feuillet, C. Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief. Bioinform. 10, 619–630 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Pham, S.K. & Pevzner, P.A. DRIMM-Synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics 26, 2509–2516 (2010).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Lin, C.H., Zhao, H., Lowcay, S.H., Shahab, A. & Bourque, G. webMGR: an online tool for the multiple genome rearrangement problem. Bioinformatics 26, 408–410 (2010).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Bouckaert, R.R. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26, 1372–1373 (2010).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Lanaud (CIRAD, France), C. Huneau (INRA, France) and C. Scutt (ENS, France) for assistance with obtaining the plant photos used in the illustrations. This work was supported by a grant from the Agence Nationale de la Recherche (ANR Blanc-PAGE, ref: ANR-2011-BSV6-00801) and the 'Région Auvergne, Allocation de Recherche Territoire, Agriculture, Alimentation, Nutrition et Santé Humaine' (contract 23000720).

Author information

Affiliations

Authors

Contributions

F.M., A.A., C.P., C.K. and J.S. performed the analysis and wrote the manuscript. J.S. coordinated the scientific project.

Corresponding author

Correspondence to Jérôme Salse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Table 5 (PDF 3637 kb)

Supplementary Table 1

AGK gene repertoire. (XLSX 682 kb)

Supplementary Table 2

AEK gene repertoire. (XLSX 442 kb)

Supplementary Table 3

AMK gene repertoire. (XLS 1014 kb)

Supplementary Table 4

MRCA gene repertoire. (XLS 358 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murat, F., Armero, A., Pont, C. et al. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 49, 490–496 (2017). https://doi.org/10.1038/ng.3813

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing