Letter | Published:

Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation

Nature Genetics volume 49, pages 125130 (2017) | Download Citation


Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10−8; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. The association of regional fat depots with hypertension in older persons of white and African American ethnicity. Am. J. Hypertens. 17, 971–976 (2004).

  2. 2.

    et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26, 372–379 (2003).

  3. 3.

    et al. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann. Intern. Med. 140, 992–1000 (2004).

  4. 4.

    , , , & Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults. Diabetes Care 27, 1375–1380 (2004).

  5. 5.

    et al. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care 26, 1413–1420 (2003).

  6. 6.

    et al. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 55, 2622–2630 (2012).

  7. 7.

    et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging 6, 762–771 (2013).

  8. 8.

    et al. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J. Am. Coll. Cardiol. 62, 921–925 (2013).

  9. 9.

    et al. Association of fat density with subclinical atherosclerosis. J. Am. Heart Assoc. 3, e000788 (2014).

  10. 10.

    et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. J. Clin. Endocrinol. Metab. 100, 227–234 (2015).

  11. 11.

    , , , & Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation 132, 1639–1647 (2015).

  12. 12.

    et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 8, e1002695 (2012).

  13. 13.

    et al. Genome-wide association of pericardial fat identifies a unique locus for ectopic fat. PLoS Genet. 8, e1002705 (2012).

  14. 14.

    et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

  15. 15.

    et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

  16. 16.

    & Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).

  17. 17.

    et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

  18. 18.

    , & METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

  19. 19.

    , , , & Adjustment During Army Life (Princeton University Press, 1949).

  20. 20.

    , , , & CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J. Nucl. Med. 51, 246–250 (2010).

  21. 21.

    , , , & Differential computed tomographic attenuation of metabolically active and inactive adipose tissues: preliminary findings. J. Comput. Assist. Tomogr. 35, 65–71 (2011).

  22. 22.

    et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

  23. 23.

    & HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

  24. 24.

    et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).

  25. 25.

    et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

  26. 26.

    et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet. 42, 864–868 (2010).

  27. 27.

    et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum. Mol. Genet. 23, 239–246 (2014).

  28. 28.

    et al. Sex-specific genetic effects influence variation in body composition. Diabetologia 51, 2233–2241 (2008).

  29. 29.

    , , , & MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

  30. 30.

    , & A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

  31. 31.

    et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).

  32. 32.

    et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

  33. 33.

    et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

  34. 34.

    Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339–344 (2011).

  35. 35.

    et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

  36. 36.

    et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

  37. 37.

    , , & GWAPower: a statistical power calculation software for genome-wide association studies with quantitative traits. BMC Genet. 12, 12 (2011).

  38. 38.

    et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

  39. 39.

    et al. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res. 21, 1008–1016 (2011).

  40. 40.

    et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

  41. 41.

    GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  42. 42.

    et al. Expression quantitative trait loci acting across multiple tissues are enriched in inherited risk for coronary artery disease. Circ. Cardiovasc. Genet. 8, 305–315 (2015).

  43. 43.

    et al. Synthesis of 53 tissue and cell line expression QTL data sets reveals master eQTLs. BMC Genomics 15, 532 (2014).

  44. 44.

    et al. Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab. 20, 1049–1058 (2014).

Download references


The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute, the National Institutes of Health, or the US Department of Health and Human Services. Please see the Supplementary Note for acknowledgments and funding sources.

Author information

Author notes

    • Audrey Y Chu
    •  & Caroline S Fox

    Present address: Merck Research Laboratories, Boston, Massachusetts, USA.

    • Ahmed H Kissebah


    • Audrey Y Chu
    • , Xuan Deng
    •  & Virginia A Fisher

    These authors contributed equally to this work.

    • L Adrienne Cupples
    • , Matthew L Steinhauser
    •  & Caroline S Fox

    These authors jointly supervised this work.


  1. NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA.

    • Audrey Y Chu
    • , John D Eicher
    • , Andrew D Johnson
    • , L Adrienne Cupples
    •  & Caroline S Fox
  2. Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Audrey Y Chu
  3. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.

    • Xuan Deng
    • , Virginia A Fisher
    • , Ching-Ti Liu
    • , Nancy L Heard-Costa
    •  & L Adrienne Cupples
  4. Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK.

    • Alexander Drong
    • , Anubha Mahajan
    •  & Andrew P Morris
  5. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Yang Zhang
    •  & Matthew L Steinhauser
  6. Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Yang Zhang
    • , Olivia Weeks
    • , Wolfram Goessling
    •  & Matthew L Steinhauser
  7. Department of Genetics, Washington University, St. Louis, Missouri, USA.

    • Mary F Feitosa
    • , Mary K Wojczynski
    •  & Ingrid B Borecki
  8. Division of Epidemiology and Biostatistics, Department of Population and Public Health Sciences, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA.

    • Audrey C Choh
    •  & Bradford Towne
  9. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.

    • Qing Duan
    •  & Leslie A Lange
  10. South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio & University of Texas of the Rio Grande Valley, Brownsville, Texas, USA.

    • Thomas D Dyer
    • , Juan M Peralta
    •  & John Blangero
  11. Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor–UCLA Medical Center, Torrance, California, USA.

    • Xiuqing Guo
    • , Jie Yao
    •  & Jerome I Rotter
  12. Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.

    • Tim Kacprowski
    •  & Georg Homuth
  13. German Center for Cardiovascular Research (DZHK), Greifswald, Germany.

    • Tim Kacprowski
    • , Matthias Nauck
    • , Nele Friedrich
    •  & Henry Völzke
  14. TOPS Nutrition and Obesity Research Center, Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA.

    • Jack W Kent Jr
    •  & Michael Olivier
  15. University of Maryland School of Medicine, Baltimore, Maryland, USA.

    • Xinggang Liu
    • , Jeffrey R O'Connell
    • , Ankita Parihar
    • , Braxton D Mitchell
    •  & Alan R Shuldiner
  16. Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

    • Kurt Lohman
    • , Jingzhong Ding
    •  & Yongmei Liu
  17. Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

    • Kurt Lohman
    • , Lingyi Lu
    •  & Carl D Langefeld
  18. Icelandic Heart Association, Kopavogur, Iceland.

    • Albert V Smith
    •  & Vilmunder Gudnason
  19. Faculty of Medicine, University of Iceland, Reykjavik, Iceland.

    • Albert V Smith
    •  & Vilmunder Gudnason
  20. TOPS Obesity and Metabolic Research Center, Biotechnology and Bioengineering Center, Department of Physiology at the Medical College of Wisconsin, Wisconsin, USA.

    • Yi Zhang
    • , Ahmed H Kissebah
    •  & Michael Olivier
  21. Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden.

    • Joel Kullberg
    •  & Lars Lind
  22. Department of Neuroradiology, University Hospital Berne, Berne, Switzerland.

    • René Laqua
  23. National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA.

    • Lenore J Launer
    •  & Tamara B Harris
  24. Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.

    • Matthias Nauck
    • , Nele Friedrich
    •  & Henri Wallaschofski
  25. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.

    • Patricia A Peyser
    • , Lawrence F Bielak
    •  & Sharon L R Kardia
  26. Department of Radiology and Radiologic Sciences, Department of Cardiovascular Medicine and Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

    • James G Terry
    •  & John Jeffrey Carr
  27. Center for Genomics and Personalized Medicine Research, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.

    • Donald W Bowden
  28. Department of Biochemistry, Center for Diabetes Research, and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

    • Donald W Bowden
  29. Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center (UTHealth) School of Public Health Brownsville Campus, Brownsville, Texas, USA.

    • Stefan A Czerwinski
  30. Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

    • Jingzhong Ding
  31. Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

    • Erik Ingelsson
  32. Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.

    • Erik Ingelsson
  33. Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

    • Yongmei Liu
  34. Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA.

    • Braxton D Mitchell
  35. Department of Biostatistics, University of Liverpool, Liverpool, UK.

    • Andrew P Morris
  36. University of Mississippi Medical Center, Jackson, Mississippi, USA.

    • Thomas H Mosley Jr
  37. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.

    • Henry Völzke
  38. German Center for Diabetes Research (DZD), Greifswald, Germany.

    • Henry Völzke
  39. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.

    • James G Wilson
  40. Division of Preventive Medicine, Department of Family Medicine and Public Health, University of California San Diego School of Medicine, San Diego, California, USA.

    • Matthew Allison
  41. Li Ka Shing Center for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK.

    • Cecilia M Lindgren
  42. Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.

    • Wolfram Goessling
  43. Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

    • Wolfram Goessling
  44. Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

    • Wolfram Goessling
  45. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

    • Wolfram Goessling
    •  & Matthew L Steinhauser
  46. Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Matthew L Steinhauser
  47. Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Caroline S Fox


  1. Search for Audrey Y Chu in:

  2. Search for Xuan Deng in:

  3. Search for Virginia A Fisher in:

  4. Search for Alexander Drong in:

  5. Search for Yang Zhang in:

  6. Search for Mary F Feitosa in:

  7. Search for Ching-Ti Liu in:

  8. Search for Olivia Weeks in:

  9. Search for Audrey C Choh in:

  10. Search for Qing Duan in:

  11. Search for Thomas D Dyer in:

  12. Search for John D Eicher in:

  13. Search for Xiuqing Guo in:

  14. Search for Nancy L Heard-Costa in:

  15. Search for Tim Kacprowski in:

  16. Search for Jack W Kent in:

  17. Search for Leslie A Lange in:

  18. Search for Xinggang Liu in:

  19. Search for Kurt Lohman in:

  20. Search for Lingyi Lu in:

  21. Search for Anubha Mahajan in:

  22. Search for Jeffrey R O'Connell in:

  23. Search for Ankita Parihar in:

  24. Search for Juan M Peralta in:

  25. Search for Albert V Smith in:

  26. Search for Yi Zhang in:

  27. Search for Georg Homuth in:

  28. Search for Ahmed H Kissebah in:

  29. Search for Joel Kullberg in:

  30. Search for René Laqua in:

  31. Search for Lenore J Launer in:

  32. Search for Matthias Nauck in:

  33. Search for Michael Olivier in:

  34. Search for Patricia A Peyser in:

  35. Search for James G Terry in:

  36. Search for Mary K Wojczynski in:

  37. Search for Jie Yao in:

  38. Search for Lawrence F Bielak in:

  39. Search for John Blangero in:

  40. Search for Ingrid B Borecki in:

  41. Search for Donald W Bowden in:

  42. Search for John Jeffrey Carr in:

  43. Search for Stefan A Czerwinski in:

  44. Search for Jingzhong Ding in:

  45. Search for Nele Friedrich in:

  46. Search for Vilmunder Gudnason in:

  47. Search for Tamara B Harris in:

  48. Search for Erik Ingelsson in:

  49. Search for Andrew D Johnson in:

  50. Search for Sharon L R Kardia in:

  51. Search for Carl D Langefeld in:

  52. Search for Lars Lind in:

  53. Search for Yongmei Liu in:

  54. Search for Braxton D Mitchell in:

  55. Search for Andrew P Morris in:

  56. Search for Thomas H Mosley in:

  57. Search for Jerome I Rotter in:

  58. Search for Alan R Shuldiner in:

  59. Search for Bradford Towne in:

  60. Search for Henry Völzke in:

  61. Search for Henri Wallaschofski in:

  62. Search for James G Wilson in:

  63. Search for Matthew Allison in:

  64. Search for Cecilia M Lindgren in:

  65. Search for Wolfram Goessling in:

  66. Search for L Adrienne Cupples in:

  67. Search for Matthew L Steinhauser in:

  68. Search for Caroline S Fox in:


X.G., A.H.K., J.K., L.J.L., M.O., P.A.P., I.B.B., D.W.B., S.A.C., J.D., V.G., T.B.H., C.D.L., L. Lind, Y.L., J.I.R., B.T. and M.A. contributed to the study design; Yi Zhang, L.J.L., M.O., P.A.P., J.G.T., I.B.B., D.W.B., J.J.C., S.A.C., V.G., T.B.H., L. Lind, B.D.M., T.H.M., J.I.R., A.R.S., H.V., J.G.W. and M.A. contributed to study management; A.H.K., J.K., M.K.W., D.W.B., S.A.C., V.G., L. Lind, B.D.M., T.H.M., A.R.S., B.T. and H.V. recruited subjects; A.Y.C., X.D., V.A.F., Yang Zhang, M.F.F., C.-T.L., O.W., A.C.C., Q.D., X.G., N.L.H.-C., X.L., L. Lu, J.R.O., A.P., A.V.S., Yi Zhang, A.H.K., M.O., P.A.P., J.G.T., M.K.W., L.F.B., I.B.B., D.W.B., J.J.C., S.A.C., J.D., N.F., S.L.R.K., C.D.L., Y.L., B.D.M., J.I.R., A.R.S., B.T., H.W., M.A., C.M.L., W.G., L.A.C., M.L.S. and C.S.F. interpreted results; A.Y.C., Yang Zhang, M.F.F., X.G., J.W.K., Yi Zhang, A.H.K., M.K.W., I.B.B., C.M.L., M.L.S. and C.S.F. drafted the manuscript; A.Y.C., X.D., V.A.F., M.F.F., C.-T.L., O.W., A.C.C., X.G., N.L.H.-C., J.W.K., X.L., L. Lu, A.M., J.R.O., A.P., Yi Zhang, G.H., A.H.K., J.K., M.N., M.O., P.A.P., J.G.T., L.F.B., J.B., I.B.B., D.W.B., J.J.C., S.A.C., J.D., N.F., E.I., S.L.R.K., C.D.L., L. Lind, Y.L., B.D.M., A.P.M., T.H.M., J.I.R., A.R.S., B.T., H.V., H.W., M.A., C.M.L., W.G., L.A.C., M.L.S. and C.S.F. performed critical review; A.Y.C., X.D., V.A.F., A.D., Yang Zhang, M.F.F., A.C.C., Q.D., T.D.D., J.D.E., X.G., N.L.H.-C., T.K., J.W.K., L.A.L., X.L., K.L., L. Lu, A.M., J.R.O., A.P., J.M.P., A.V.S., J.Y., L.F.B., J.D., C.D.L., Y.L., B.D.M., A.P.M., C.M.L. contributed to statistical methods and analysis; Yi Zhang, G.H., M.O., D.W.B., S.A.C., E.I., S.L.R.K., Y.L., A.P.M., J.I.R., A.R.S., B.T. and C.M.L. performed genotyping; A.Y.C., X.D., V.A.F., M.F.F., C.-T.L., A.C.C., J.D.E., A.D.J., T.K., A.V.S. and Yi Zhang contributed to bioinformatics; Yang Zhang, O.W., R.L., N.F., W.G. and M.L.S. worked on data collection; and Yang Zhang and M.L.S. contributed to animal work and functional data.

Competing interests

C.S.F. and A.Y.C. are currently employed by Merck Research Laboratories.

Corresponding authors

Correspondence to Audrey Y Chu or Matthew L Steinhauser or Caroline S Fox.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Tables 1–17, Supplementary Figures 1–6 and Supplementary Note

About this article

Publication history






Further reading