Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps

An Author Correction to this article was published on 02 November 2018

This article has been updated

Abstract

Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Study design.
Figure 2: Allelic spectrum of cardiometabolic trait variants.
Figure 3: GARFIELD functional enrichment analyses.
Figure 4: Fine-mapping experiments.
Figure 5: Summary of variant consequences for fine-mapped variants.

Change history

  • 02 November 2018

    In the version of the article published, the surname of author Aaron Isaacs is misspelled as Issacs.

References

  1. Cohen, J.C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Johansen, C.T. et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet. 42, 684–687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Auer, P.L. et al. Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat. Genet. 46, 629–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huyghe, J.R. et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat. Genet. 45, 197–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peloso, G.M. et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am. J. Hum. Genet. 94, 223–232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Harst, P. et al. Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Auer, P.L. et al. Imputation of exome sequence variants into population-based samples and blood-cell-trait-associated loci in African Americans: NHLBI GO Exome Sequencing Project. Am. J. Hum. Genet. 91, 794–808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinthorsdottir, V. et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat. Genet. 46, 294–298 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 47, 589–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moayyeri, A., Hammond, C.J., Hart, D.J. & Spector, T.D. Effects of age on genetic influence on bone loss over 17 years in women: the Healthy Ageing Twin Study (HATS). J. Bone Miner. Res. 27, 2170–2178 (2012).

    Article  PubMed  Google Scholar 

  13. Boyd, A. et al. Cohort profile: the 'children of the 90s'—the index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).

    Article  PubMed  Google Scholar 

  14. Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Timpson, N.J. et al. A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans. Nat. Commun. 5, 4871 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Taylor, P.N. et al. Whole-genome sequence-based analysis of thyroid function. Nat. Commun. 6, 5681 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat. Commun. 6, 8111 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46, 818–825 (2014).

  19. Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function–related traits in east Asian populations. Nat. Genet. 44, 904–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer, T.E. et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six loci influencing serum magnesium levels. PLoS Genet. 6, e1001045 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Polfus, L.M. et al. Whole-exome sequencing identifies loci associated with blood cell traits and reveals a role for alternative GFI1B splice variants in human hematopoiesis. Am. J. Hum. Genet. 99, 481–488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Service, S.K. et al. Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci. PLoS Genet. 10, e1004147 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Maller, J.B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. 47, 955–961 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maurano, M.T. et al. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo. Nat. Genet. 47, 1393–1401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Douvris, A. et al. Functional analysis of the TRIB1 associated locus linked to plasma triglycerides and coronary artery disease. J. Am. Heart Assoc. 3, e000884 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Iwamoto, S. et al. The role of TRIB1 in lipid metabolism; from genetics to pathways. Biochem. Soc. Trans. 43, 1063–1068 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Baerenwald, D.A. et al. Multiple functional polymorphisms in the G6PC2 gene contribute to the association with higher fasting plasma glucose levels. Diabetologia 56, 1306–1316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan, Q., Liu, E.Y., Croteau-Chonka, D.C., Mohlke, K.L. & Li, Y. A comprehensive SNP and indel imputability database. Bioinformatics 29, 528–531 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Möröy, T., Vassen, L., Wilkes, B. & Khandanpour, C. From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 126, 2561–2569 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laurent, B. et al. A short Gfi-1B isoform controls erythroid differentiation by recruiting the LSD1-CoREST complex through the dimethylation of its SNAG domain. J. Cell Sci. 125, 993–1002 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Danjou, F. et al. Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels. Nat. Genet. 47, 1264–1271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sankaran, V.G. et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 26, 2075–2087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ono, Y. et al. Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood 120, 3812–3821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shavit, J.A. et al. Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice. Genes Dev. 12, 2164–2174 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stevenson, W.S. et al. GFI1B mutation causes a bleeding disorder with abnormal platelet function. J. Thromb. Haemost. 11, 2039–2047 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Monteferrario, D. et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N. Engl. J. Med. 370, 245–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Wiestner, A., Schlemper, R.J., van der Maas, A.P. & Skoda, R.C. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat. Genet. 18, 49–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Ghilardi, N., Wiestner, A., Kikuchi, M., Ohsaka, A. & Skoda, R.C. Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene. Br. J. Haematol. 107, 310–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kondo, T. et al. Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood 92, 1091–1096 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, K. et al. A de novo splice donor mutation in the thrombopoietin gene causes hereditary thrombocythemia in a Polish family. Haematologica 93, 706–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Dasouki, M.J. et al. Exome sequencing reveals a thrombopoietin ligand mutation in a Micronesian family with autosomal recessive aplastic anemia. Blood 122, 3440–3449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giannakopoulos, B. & Krilis, S.A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med. 368, 1033–1044 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. De Groot, P.G., Meijers, J.C. & Urbanus, R.T. Recent developments in our understanding of the antiphospholipid syndrome. Int. J. Lab. Hematol. 34, 223–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Sanghera, D.K., Wagenknecht, D.R., McIntyre, J.A. & Kamboh, M.I. Identification of structural mutations in the fifth domain of apolipoprotein H (β2-glycoprotein I) which affect phospholipid binding. Hum. Mol. Genet. 6, 311–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Korporaal, S.J. et al. Binding of low density lipoprotein to platelet apolipoprotein E receptor 2′ results in phosphorylation of p38MAPK. J. Biol. Chem. 279, 52526–52534 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Lutters, B.C. et al. Dimers of β2-glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2′. J. Biol. Chem. 278, 33831–33838 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in blood. Nat. Biotechnol. 30, 224–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Khan, A. & Zhang, X. dbSUPER: a database of super-enhancers in mouse and human genome. Nucleic Acids Res. 44, D1, D164–D171 (2016).

    Article  CAS  Google Scholar 

  55. Xu, J. et al. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev. Cell 23, 796–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  57. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  58. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Keller, M.F. et al. Trans-ethnic meta-analysis of white blood cell phenotypes. Hum. Mol. Genet. 23, 6944–6960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vijai, J. et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat. Commun. 6, 5751 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Menicanin, D., Bartold, P.M., Zannettino, A.C. & Gronthos, S. Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev. 19, 1501–1510 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Konopatskaya, O. et al. PKCα regulates platelet granule secretion and thrombus formation in mice. J. Clin. Invest. 119, 399–407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams, C.M., Harper, M.T. & Poole, A.W. PKCα negatively regulates in vitro proplatelet formation and in vivo platelet production in mice. Platelets 25, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kong, Y., Wang, H., Lin, T. & Wang, S. Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow–derived mesenchymal stem cells. Mediators Inflamm. 2014, 565369 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yang, L. et al. Sphingosine 1-phosphate receptor 2 and 3 mediate bone marrow–derived monocyte/macrophage motility in cholestatic liver injury in mice. Sci. Rep. 5, 13423 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hildebrand, J.D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Menon, M.C. et al. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. J. Clin. Invest. 125, 208–221 (2015).

    Article  PubMed  Google Scholar 

  71. Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grand, F.H. et al. p53-binding protein 1 is fused to the platelet-derived growth factor receptor β in a patient with a t(5;15)(q33;q22) and an imatinib-responsive eosinophilic myeloproliferative disorder. Cancer Res. 64, 7216–7219 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Caulfield, M.J. et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 5, e197 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    Article  PubMed  CAS  Google Scholar 

  75. Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mägi, R. & Morris, A.P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wakefield, J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33, 79–86 (2009).

    Article  PubMed  Google Scholar 

  80. Chen, W. et al. Fine mapping causal variants with an approximate Bayesian method using marginal test statistics. Genetics 200, 719–736 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study makes use of data generated by the UK10K Consortium, derived from samples from the ALSPAC and TwinsUK data sets. A full list of the investigators who contributed to the generation of the data is available from http://www.UK10K.org/. Funding for UK10K was provided by the Wellcome Trust under award WT091310. The research of N.S. is supported by the Wellcome Trust (grants WT098051 and WT091310), the European Union Framework Programme 7 (EPIGENESYS grant 257082 and BLUEPRINT grant HEALTH-F5-2011-282510) and the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge in partnership with NHS Blood and Transplant (NHSBT). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or NHSBT. P.L.A. was supported by NHLBI R21 HL121422-02. A full list of grant support and acknowledgements can be found in the Supplementary Note and ref. 14.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Designed and/or managed individual studies and contributed data: A.B., A.D., A.G.U., A. Hamsten, A. Hofman, A.P.R., C.L., C.K., C.M.v.D., D.M., D.T., E.Z., G.G., H.W., J.C.C., J.S.K., L.F., M.A.S., M. Franberg, M. Frontini, N.J.T., N.S., P.G., P.L.A., R.A.S., R.P., W.M. Generated and/or performed quality control of data: A.-E.F., A. Hamsten, A. Hofman, A.I., A.M., B.S., C.S.F., E.M.v.L., F.R., G.L., G.M., G.Z., H.E., I.N., J.H., J.L., J.L.M., J.R.B.P., K.P., K.W., L.C., L.S., M.C., M.E.K., M.S.-L., M.T., N.A., O.H.F., S.-Y.-S., T.J., T.R.G., W.A., Y.M. Analyzed the data and provided critical interpretation of results: A.-E.F., A. Hamsten, A. Hofman, C.B., C.S.F., D.J., F.v.D., H.E., J.A.M., J.H., J.L.M., J.R.B.P., K.P., K.W., L.C., M.C., M.T.M., P.D., P.L.A., S.-Y.S., T.J., T.R.G., V.I., W.A., W.Z., Y.M. Provided tools or materials: A.P.R., E.Z., F.v.D., G.D., M.T.M., N.J.T., N.S., P.D. Wrote the manuscript: A.P.R., C.B., D.J., J.A.M., J.H., J.L.M., K.W., L.C., L.F., M.A.S., N.J.T., N.S., P.L.A., V.I. Evaluated the manuscript: A.B., A.D., A.-E.F., A.G.U., A. Hamsten, A. Hofman, A.I., A.M., A.P.R., B.S., C.B., C.L., C.K., C.S.F., C.M.v.D., D.J., D.M., D.T., E.M.v.L., E.Z., F.R., F.v.D., G.D., G.G., G.L., G.M., G.Z., H.E., H.W., I.N., J.A.M., J.C.C., J.H., J.L., J.L.M., J.R.B.P., J.S.K., K.P., K.W., L.C., L.F., L.S., M.A.S., M.C., M.E.K., M. Franberg, M. Frontini, M.S.-L., M.T., M.T.M., N.A., N.J.T., N.S., O.H.F., P.D., P.G., P.L.A., R.A.S., R.P., S.-Y.S., T.J., T.R.G., V.I., W.A., W.M., W.Z., Y.M. Designed and/or managed the project: A.P.R., N.J.T., N.S., P.L.A.

Corresponding authors

Correspondence to Alexander P Reiner, Paul L Auer or Nicole Soranzo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A list of consortium members and affiliations can be found at http://www.uk10k.org/.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1–4. (PDF 8534 kb)

Supplementary Table 1

Study descriptives. (XLSX 117 kb)

Supplementary Table 2

Phenotype preparation protocols. (XLSX 73 kb)

Supplementary Table 3

Association statistics for new loci in discovery and replication. (XLSX 131 kb)

Supplementary Table 4

GENCODE, ENCODE and Roadmap Epigenomics annotations used for enrichment analysis with software GARFIELD. (XLSX 106 kb)

Supplementary Table 5

Enrichment of cardiometabolic traits in 1,005 GENCODE, ENCODE and Roadmap Epigenomics annotations at 1 × 10−5 and 1 × 10−8 GWAS significance thresholds. (XLSX 202 kb)

Supplementary Table 6

Fine-mapping results. (XLSX 231 kb)

Supplementary Table 7

FINEMAP analysis with a relaxed assumption of multiple causal variants per locus. (XLSX 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iotchkova, V., Huang, J., Morris, J. et al. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat Genet 48, 1303–1312 (2016). https://doi.org/10.1038/ng.3668

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing