Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An allelic series of miR-1792–mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron

Abstract

Polycistronic microRNA (miRNA) clusters are a common feature of vertebrate genomes. The coordinated expression of miRNAs belonging to different seed families from a single transcriptional unit suggests functional cooperation, but this hypothesis has not been experimentally tested. Here we report the characterization of an allelic series of genetically engineered mice harboring selective targeted deletions of individual components of the miR-1792 cluster. Our results demonstrate the coexistence of functional cooperation and specialization among members of this cluster, identify a previously undescribed function for the miR-17 seed family in controlling axial patterning in vertebrates and show that loss of miR-19 selectively impairs Myc-driven tumorigenesis in two models of human cancer. By integrating phenotypic analysis and gene expression profiling, we provide a genome-wide view of how the components of a polycistronic miRNA cluster affect gene expression in vivo. The reagents and data sets reported here will accelerate exploration of the complex biological functions of this important miRNA cluster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of an allelic series of miR-1792–mutant mice.
Figure 2: Feingold syndrome (FS2) features in miR-1792–mutant mice.
Figure 3: miR-1792 regulates axial patterning.
Figure 4: Analysis of B cell development in the miR-1792 allelic series.
Figure 5: Impaired Myc-driven lymphomagenesis in miR-19–deficient mice.
Figure 6: Genome-wide identification of genes regulated by members of the miR-1792 cluster.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    CAS  PubMed  Google Scholar 

  3. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  4. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  5. Chiang, H.R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Concepcion, C.P., Bonetti, C. & Ventura, A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J. 18, 262–267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-1792 family of miRNA clusters. Cell 132, 875–886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. de Pontual, L. et al. Germline deletion of the miR-1792 cluster causes skeletal and growth defects in humans. Nat. Genet. 43, 1026–1030 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Feingold, M., Hall, B.D., Lacassie, Y. & Martinez-Frias, M.L. Syndrome of microcephaly, facial and hand abnormalities, tracheoesophageal fistula, duodenal atresia, and developmental delay. Am. J. Med. Genet. 69, 245–249 (1997).

    CAS  PubMed  Google Scholar 

  10. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

    CAS  PubMed  Google Scholar 

  11. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).

    CAS  PubMed  Google Scholar 

  12. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumps, C. et al. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes. PLoS ONE 8, e52321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mi, S. et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc. Natl. Acad. Sci. USA 107, 3710–3715 (2010).

    CAS  PubMed  Google Scholar 

  15. Schetter, A.J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. J. Am. Med. Assoc. 299, 425–436 (2008).

    CAS  Google Scholar 

  16. Thayanithy, V. et al. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone 50, 171–181 (2012).

    CAS  PubMed  Google Scholar 

  17. O′Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc–regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    PubMed  Google Scholar 

  18. Conkrite, K. et al. miR-1792 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev. 25, 1734–1745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 38, 1060–1065 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin, H.Y. et al. MicroRNA-1792 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J. 32, 2377–2391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Olive, V. et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 23, 2839–2849 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Olive, V. et al. A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. eLife 2, e00822 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Sandhu, S.K. et al. B-cell malignancies in microRNA Eμ-miR-1792 transgenic mice. Proc. Natl. Acad. Sci. USA 110, 18208–18213 (2013).

    CAS  PubMed  Google Scholar 

  24. Uziel, T. et al. The miR-1792 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc. Natl. Acad. Sci. USA 106, 2812–2817 (2009).

    CAS  PubMed  Google Scholar 

  25. Mavrakis, K.J. et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat. Cell Biol. 12, 372–379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mu, P. et al. Genetic dissection of the miR-1792 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23, 2806–2811 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Saga, Y. & Takeda, H. The making of the somite: molecular events in vertebrate segmentation. Nat. Rev. Genet. 2, 835–845 (2001).

    CAS  PubMed  Google Scholar 

  28. Wellik, D.M. Hox patterning of the vertebrate axial skeleton. Dev. Dyn. 236, 2454–2463 (2007).

    CAS  PubMed  Google Scholar 

  29. Adams, J.M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    CAS  PubMed  Google Scholar 

  30. Langdon, W.Y., Harris, A.W., Cory, S. & Adams, J.M. The c-myc oncogene perturbs B lymphocyte development in Eμ-myc transgenic mice. Cell 47, 11–18 (1986).

    CAS  PubMed  Google Scholar 

  31. Jenkins, R.B., Qian, J., Lieber, M.M. & Bostwick, D.G. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 57, 524–531 (1997).

    CAS  PubMed  Google Scholar 

  32. Qian, J., Jenkins, R.B. & Bostwick, D.G. Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization. Mod. Pathol. 10, 1113–1119 (1997).

    CAS  PubMed  Google Scholar 

  33. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    CAS  PubMed  Google Scholar 

  34. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  36. Eichhorn, S.W. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104–115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Galvin, K.M. et al. A role for Smad6 in development and homeostasis of the cardiovascular system. Nat. Genet. 24, 171–174 (2000).

    CAS  PubMed  Google Scholar 

  39. Meneghini, V., Odent, S., Platonova, N., Egeo, A. & Merlo, G.R. Novel TBX3 mutation data in families with ulnar-mammary syndrome indicate a genotype-phenotype relationship: mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur. J. Med. Genet. 49, 151–158 (2006).

    PubMed  Google Scholar 

  40. Stennard, F.A. et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132, 2451–2462 (2005).

    CAS  PubMed  Google Scholar 

  41. Kirk, E.P. et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 81, 280–291 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kleaveland, B. et al. Regulation of cardiovascular development and integrity by the heart of glass–cerebral cavernous malformation protein pathway. Nat. Med. 15, 169–176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, J.S. et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev. Cell 11, 845–857 (2006).

    CAS  PubMed  Google Scholar 

  44. Follit, J.A. et al. The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex. PLoS Genet. 4, e1000315 (2008).

    PubMed  PubMed Central  Google Scholar 

  45. Beppu, H. et al. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221, 249–258 (2000).

    CAS  PubMed  Google Scholar 

  46. Winnier, G., Blessing, M., Labosky, P.A. & Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    CAS  PubMed  Google Scholar 

  47. Chapman, D.L. & Papaioannou, V.E. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391, 695–697 (1998).

    CAS  PubMed  Google Scholar 

  48. Jiang, Y.J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).

    CAS  PubMed  Google Scholar 

  49. Pourquié, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003).

    PubMed  Google Scholar 

  50. Deschamps, J. & van Nes, J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132, 2931–2942 (2005).

    CAS  PubMed  Google Scholar 

  51. McPherron, A.C., Lawler, A.M. & Lee, S.J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet. 22, 260–264 (1999).

    CAS  PubMed  Google Scholar 

  52. Selever, J., Liu, W., Lu, M.F., Behringer, R.R. & Martin, J.F. Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev. Biol. 276, 268–279 (2004).

    CAS  PubMed  Google Scholar 

  53. Davenport, T.G., Jerome-Majewska, L.A. & Papaioannou, V.E. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130, 2263–2273 (2003).

    CAS  PubMed  Google Scholar 

  54. Yekta, S., Tabin, C.J. & Bartel, D.P. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat. Rev. Genet. 9, 789–796 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hornstein, E. et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438, 671–674 (2005).

    CAS  PubMed  Google Scholar 

  56. Ronshaugen, M., Biemar, F., Piel, J., Levine, M. & Lai, E.C. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19, 2947–2952 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tanzer, A. & Stadler, P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004).

    CAS  PubMed  Google Scholar 

  58. Rodríguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    PubMed  Google Scholar 

  59. Hafner, M. et al. Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 58, 164–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  61. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  63. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  64. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  65. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hollenstein for editing the manuscript and members of the Ventura laboratory for helpful discussions. The authors greatly acknowledge the contribution of the Weill Cornell Epigenomics Core. This work was funded by grants from the US National Institutes of Health/National Cancer Institute (R01CA149707 to A.V. and Core grant P30CA008748), the STARR Consortium (to A.V. and D.B.), the Geoffrey Beene Cancer Foundation (to A.V.), the Gabrielle's Angel Foundation (to A.V.), the Leukemia Lymphoma Society (to Y.-C.H.), the American Italian Cancer Foundation (to C.B.) and a US National Institutes of Health training grant (F31CA168356 to C.P.C.).

Author information

Authors and Affiliations

Authors

Contributions

A.V., J.A.V., Y.-C.H. and P.M. conceived the project and designed the experiments. A.V., J.A.V. and Y.-C.H. wrote the manuscript. A.V., E.Y., P.O. and P.M. generated the mouse strains. Y.-C.H. characterized overall viability. Y.-C.H. and P.M. characterized the hematopoietic phenotypes. J.A.V., E.Y. and L.S. characterized the skeletal phenotypes. P.M., B.C. and C.B. characterized the oncogenic phenotypes. Y.-C.H., J.A.V. and C.P.C. generated the small-RNA libraries. Y.-C.H. and J.A.V. generated the RNA-seq libraries. A.V., D.B., C.L., I.S. and A.J.G. performed the computational analysis for the RNA-seq data. D.B. and C.L. contributed equally to the computational analysis.

Corresponding author

Correspondence to Andrea Ventura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–4 and Supplementary Note. (PDF 23229 kb)

Supplementary Figure 8

High-resolution Scalable Vector Graphics (svg) format version of the tail bud Circos plot shown in Figure 6a. (XML 1619 kb)

Supplementary Figure 9

High-resolution Scalable Vector Graphics (svg) format version of the tail bud Circos plot shown in Figure 6a, modified to include genes differentially expressed in miR-17~92Δ17,18/Δ17,18 and miR-17~92Δ17,18,92/Δ17,18,92 embryos. To reduce the complexity of the plot, only links originating or ending at one of the four single-seed mutants are shown. (XML 3453 kb)

Supplementary Figure 10

High-resolution Scalable Vector Graphics (svg) format version of a Circos plot generated from the heart data set. (XML 337 kb)

Supplementary Figure 11

High-resolution Scalable Vector Graphics (svg) format version of the Circos plot generated from the heart data set, modified to include genes differentially expressed in miR-17~92Δ17,18/Δ17,18 and miR-17~92Δ17,18,92/Δ17,18,92 embryos. To reduce the complexity of the plot, only links originating or ending at one of the four single-seed mutants are shown. (XML 603 kb)

Supplementary Table 5

Gene expression data for heart and tail bud samples and information on the presence of miR-17~92–binding sites. (XLSX 5040 kb)

Supplementary Table 6

Gene Ontology enrichment analysis using genes deregulated in the tail buds and hearts of miR-17~92–null embryos. (XLSX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YC., Vidigal, J., Mu, P. et al. An allelic series of miR-1792–mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat Genet 47, 766–775 (2015). https://doi.org/10.1038/ng.3321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing