Abstract

Known genetic loci explain only a small proportion of the familial relative risk of colorectal cancer (CRC). We conducted a genome-wide association study of CRC in East Asians with 14,963 cases and 31,945 controls and identified 6 new loci associated with CRC risk (P = 3.42 × 10−8 to 9.22 × 10−21) at 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3 and 19q13.2. Two of these loci map to genes (TCF7L2 and TGFB1) with established roles in colorectal tumorigenesis. Four other loci are located in or near genes involved in transcriptional regulation (ZMIZ1), genome maintenance (FEN1), fatty acid metabolism (FADS1 and FADS2), cancer cell motility and metastasis (CD9), and cell growth and differentiation (NXN). We also found suggestive evidence for three additional loci associated with CRC risk near genome-wide significance at 8q24.11, 10q21.1 and 10q24.2. Furthermore, we replicated 22 previously reported CRC-associated loci. Our study provides insights into the genetic basis of CRC and suggests the involvement of new biological pathways.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

  2. 2.

    et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

  3. 3.

    Genetic predisposition to colorectal cancer. Nat. Rev. Cancer 4, 769–780 (2004).

  4. 4.

    , , , & Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin. Cancer Res. 13, 356–361 (2007).

  5. 5.

    , & Genetic variants associated with colorectal cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Gut 63, 326–336 (2014).

  6. 6.

    et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45, 136–144 (2013).

  7. 7.

    et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat. Genet. 39, 989–994 (2007).

  8. 8.

    et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet. 39, 984–988 (2007).

  9. 9.

    et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat. Genet. 39, 1315–1317 (2007).

  10. 10.

    et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat. Genet. 40, 26–28 (2008).

  11. 11.

    et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet. 40, 631–637 (2008).

  12. 12.

    et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat. Genet. 40, 623–630 (2008).

  13. 13.

    et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat. Genet. 40, 1426–1435 (2008).

  14. 14.

    et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat. Genet. 42, 973–977 (2010).

  15. 15.

    et al. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet. 7, e1002105 (2011).

  16. 16.

    et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat. Genet. 44, 770–776 (2012).

  17. 17.

    et al. Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology 144, 799–807 (2013).

  18. 18.

    et al. Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat. Genet. 45, 191–196 (2013).

  19. 19.

    et al. Genome-wide association study identifies a new SMAD7 risk variant associated with colorectal cancer risk in East Asians. Int. J. Cancer 10.1002/ijc.28733 (21 January 2014).

  20. 20.

    et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut 60, 799–805 (2011).

  21. 21.

    et al. Genotype-environment interactions in microsatellite stable/microsatellite instability-low colorectal cancer: results from a genome-wide association study. Cancer Epidemiol. Biomarkers Prev. 20, 758–766 (2011).

  22. 22.

    et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  23. 23.

    et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  24. 24.

    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  25. 25.

    et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

  26. 26.

    et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

  27. 27.

    GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  28. 28.

    et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

  29. 29.

    et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

  30. 30.

    Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  31. 31.

    et al. Gene Expression Atlas update—a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res. 40, D1077–D1081 (2012).

  32. 32.

    et al. A genome-wide RNAi screen for Wnt/β-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc. Natl. Acad. Sci. USA 105, 9697–9702 (2008).

  33. 33.

    , , & T-cell factor 4 functions as a tumor suppressor whose disruption modulates colon cell proliferation and tumorigenesis. Proc. Natl. Acad. Sci. USA 108, 4914–4919 (2011).

  34. 34.

    et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat. Genet. 43, 964–968 (2011).

  35. 35.

    et al. Genetic control of the circulating concentration of transforming growth factor type β1. Hum. Mol. Genet. 8, 93–97 (1999).

  36. 36.

    , & Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

  37. 37.

    et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

  38. 38.

    et al. A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 63, 2610–2615 (2003).

  39. 39.

    et al. Transforming growth factor-β1 hyperexpression in African-American hypertensives: a novel mediator of hypertension and/or target organ damage. Proc. Natl. Acad. Sci. USA 97, 3479–3484 (2000).

  40. 40.

    et al. Association of a polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J. Bone Miner. Res. 13, 1569–1576 (1998).

  41. 41.

    & Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl. J. Med. 361, 2449–2460 (2009).

  42. 42.

    et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998).

  43. 43.

    et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 321, 1361–1365 (2008).

  44. 44.

    et al. Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer. Carcinogenesis 33, 119–123 (2012).

  45. 45.

    & SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 37, W600–W605 (2009).

  46. 46.

    et al. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res. 39, 781–794 (2011).

  47. 47.

    et al. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat. Med. 13, 812–819 (2007).

  48. 48.

    et al. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc. Natl. Acad. Sci. USA 99, 9924–9929 (2002).

  49. 49.

    et al. Common genetic variants of the FADS1-FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 15, 1745–1756 (2006).

  50. 50.

    , , , & Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin–β-catenin signaling axis. Science 310, 1504–1510 (2005).

  51. 51.

    et al. Prospective study of urinary prostaglandin E2 metabolite and colorectal cancer risk. J. Clin. Oncol. 24, 5010–5016 (2006).

  52. 52.

    , , , & Ectopic expression of Zmiz1 induces cutaneous squamous cell malignancies in a mouse model of cancer. J. Invest. Dermatol. 133, 1863–1869 (2013).

  53. 53.

    et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).

  54. 54.

    et al. The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int. J. Cancer 121, 2140–2152 (2007).

  55. 55.

    et al. Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin. Cancer Res. 4, 1507–1510 (1998).

  56. 56.

    et al. Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/β-catenin signal via ISGylation of β-catenin. Gut 59, 907–917 (2010).

  57. 57.

    et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

  58. 58.

    , , & The unexpected role of lymphotoxin β receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development. Oncogene 29, 5006–5018 (2010).

  59. 59.

    et al. Targeting the lymphotoxin-β receptor with agonist antibodies as a potential cancer therapy. Cancer Res. 66, 9617–9624 (2006).

  60. 60.

    & Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid. Redox Signal. 9, 1035–1057 (2007).

  61. 61.

    , , & The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt–β-catenin signalling through Dishevelled. Nat. Cell Biol. 8, 501–508 (2006).

  62. 62.

    et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361 (2013).

  63. 63.

    et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 45, 385–391 (2013).

  64. 64.

    et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat. Genet. 42, 764–767 (2010).

  65. 65.

    et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990 (2009).

  66. 66.

    et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat. Genet. 42, 599–603 (2010).

  67. 67.

    et al. Association between the SERPING1 gene and age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese. PLoS ONE 6, e19108 (2011).

  68. 68.

    et al. Adiponectin concentrations: a genome-wide association study. Am. J. Hum. Genet. 87, 545–552 (2010).

  69. 69.

    et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet. 41, 324–328 (2009).

  70. 70.

    , , , & MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

  71. 71.

    , , , & Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

  72. 72.

    et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

  73. 73.

    et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388–393 (2004).

  74. 74.

    et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

  75. 75.

    , & METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

  76. 76.

    , & Quantitative synthesis in systematic reviews. Ann. Intern. Med. 127, 820–826 (1997).

  77. 77.

    , , & Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

  78. 78.

    et al. Common genetic determinants of breast-cancer risk in East Asian women: a collaborative study of 23 637 breast cancer cases and 25 579 controls. Hum. Mol. Genet. 22, 2539–2550 (2013).

  79. 79.

    & A systematic review and meta-analysis of familial colorectal cancer risk. Am. J. Gastroenterol. 96, 2992–3003 (2001).

  80. 80.

    et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

  81. 81.

    et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).

  82. 82.

    & HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

  83. 83.

    et al. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nat. Biotechnol. 29, 1019–1023 (2011).

Download references

Acknowledgements

The authors are solely responsible for the scientific content of this paper. The sponsors of this study had no role in study design, data collection, analysis or interpretation, writing of the report or the decision for submission. We thank all study participants and research staff of all parent studies for their contributions and commitment to this project, R. Courtney for DNA preparation, J. He for data processing and analyses, X. Guo for suggestions on bioinformatics analysis, and M.J. Daly and B.J. Rammer for editing and preparing the manuscript. The work at the Vanderbilt University School of Medicine was supported by US National Institutes of Health (NIH) grants R37CA070867, R01CA082729, R01CA124558, R01CA148667 and R01CA122364, as well as by Ingram Professorship and Research Reward funds from the Vanderbilt University School of Medicine. Studies (grant support) participating in the Asia Colorectal Cancer Consortium include the Shanghai Women's Health Study (US NIH, R37CA070867), the Shanghai Men's Health Study (US NIH, R01CA082729), the Shanghai Breast and Endometrial Cancer Studies (US NIH, R01CA064277 and R01CA092585; contributing only controls), Shanghai Colorectal Cancer Study 3 (US NIH, R37CA070867 and Ingram Professorship funds), the Guangzhou Colorectal Cancer Study (National Key Scientific and Technological Project, 2011ZX09307-001-04; the National Basic Research Program, 2011CB504303, contributing only controls; the Natural Science Foundation of China, 81072383, contributing only controls), the Japan BioBank Colorectal Cancer Study (grant from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government), the Hwasun Cancer Epidemiology Study–Colon and Rectum Cancer (HCES-CRC; grants from the Korea Center for Disease Control and Prevention and the Jeonnam Regional Cancer Center), the Aichi Colorectal Cancer Study (Grant-in-Aid for Cancer Research, grant for the Third Term Comprehensive Control Research for Cancer and Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology, 17015018 and 221S0001), the Korea-NCC (National Cancer Center) Colorectal Cancer Study (Basic Science Research Program through the National Research Foundation of Korea, 2010-0010276; National Cancer Center Korea, 0910220), the Korea-Seoul Colorectal Cancer Study (none reported) and the KCPS-II Colorectal Cancer Study (National R&D Program for Cancer Control, 1220180; Seoul R&D Program, 10526).

We also thank all participants, staff and investigators from the GECCO, CORECT and CCFR consortia for making it possible to present results from populations of European ancestry for the new CRC-associated loci identified among East Asians. GECCO, CORECT and CCFR are directed by U. Peters, S. Gruber and G. Casey, respectively. Complete lists of investigators from the GECCO, CORECT and CCFR consortia are provided below.

Investigators (institution and location) in the GECCO consortium include (in alphabetical order) John A. Baron (Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA), Sonja I. Berndt (Division of Cancer Epidemiology and Genetics, National Cancer Institute, US NIH, Bethesda, Maryland, USA), Stéphane Bezieau (Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France), Hermann Brenner (Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany), Bette J. Caan (Division of Research, Kaiser Permanente Medical Care Program, Oakland, California, USA), Christopher S. Carlson (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, School of Public Health, University of Washington, Seattle, Washington, USA), Graham Casey (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), Andrew T. Chan (Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA and Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA), Jenny Chang-Claude (Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany), Stephen J. Chanock (Division of Cancer Epidemiology and Genetics, National Cancer Institute, US NIH, Bethesda, Maryland, USA), David V. Conti (Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA), Keith Curtis (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), David Duggan (Translational Genomics Research Institute, Phoenix, Arizona, USA), Charles S. Fuchs (Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA and Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA), Steven Gallinger (Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada and Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada), Edward L. Giovannucci (Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA), Stephen B. Gruber (University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), Robert W. Haile (Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA), Tabitha A. Harrison (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Richard B. Hayes (Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA), Michael Hoffmeister (Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany), John L. Hopper (Melbourne School of Population Health, The University of Melbourne, Melbourne, Victoria, Australia), Li Hsu (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA and Department of Biostatistics, University of Washington, Seattle, Washington, USA), Thomas J. Hudson (Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada), David J. Hunter (Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA), Carolyn M. Hutter (Division of Cancer Control and Population Sciences, National Cancer Institute, US NIH, Bethesda, Maryland, USA), Rebecca D. Jackson (Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, Ohio, USA), Mark A. Jenkins (Melbourne School of Population Health, The University of Melbourne, Melbourne, Victoria, Australia), Shuo Jiao (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Sébastien Küry (Service de Génétique Médicale, CHU Nantes, Nantes, France), Loic Le Marchand (Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA), Mathieu Lemire (Ontario Institute for Cancer Research, Toronto, Ontario, Canada), Noralane M. Lindor (Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona, USA), Jing Ma (Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA), Polly A. Newcomb (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA and Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA), Ulrike Peters (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA and Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA), John D. Potter (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA, Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA and Centre for Public Health Research, Massey University, Palmerston North, New Zealand), Conghui Qu (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Thomas Rohan (Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA), Robert E. Schoen (Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA), Fredrick R. Schumacher (Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA), Daniela Seminara (Division of Cancer Control and Population Sciences, National Cancer Institute, US NIH, Bethesda, Maryland, USA), Martha L. Slattery (Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA), Stephen N. Thibodeau (Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA and Department of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota, USA), Emily White (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA and Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA) and Brent W. Zanke (Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada).

Investigators (institution and location) from the CORECT consortium include (in alphabetical order) Kendra Blalock (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Peter T. Campbell (Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA), Graham Casey (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), David V. Conti (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), Christopher K. Edlund (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), Jane Figueiredo (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), W. James Gauderman (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), Jian Gong (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Roger C. Green (Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada), Stephen B. Gruber (University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), John F. Harju (University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA), Tabitha A. Harrison (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Eric J. Jacobs (Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA), Mark A. Jenkins (Melbourne School of Population Health, The University of Melbourne, Melbourne, Victoria, Australia), Shuo Jiao (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Li Li (Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA), Yi Lin (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Frank J. Manion (University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA), Victor Moreno (Institut d'Investigació Biomèdica de Bellvitge, Institut Catala d'Oncologia, Hospitalet, Barcelona, Spain), Bhramar Mukherjee (University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA), Ulrike Peters (Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA), Leon Raskin (University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), Fredrick R. Schumacher (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA), Daniela Seminara (Division of Cancer Control and Population Sciences, National Cancer Institute, US NIH, Bethesda, Maryland, USA), Gianluca Severi (Melbourne School of Population Health, The University of Melbourne, Melbourne, Victoria, Australia), Stephanie L. Stenzel (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA) and Duncan C. Thomas (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA).

The CCFR consortium is represented by Graham Casey (Department of Preventive Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA).

We also thank B. Buecher of ASTERISK; U. Handte-Daub, M. Celik, R. Hettler-Jensen, U. Benscheid and U. Eilber of DACHS; and P. Soule, H. Ranu, I. Devivo, D.J. Hunter, Q. Guo, L. Zhu and H. Zhang of HPFS, NHS and PHS, as well as the following state cancer registries for their help: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Virginia, Washington and Wyoming. We thank C. Berg and P. Prorok of PLCO; T. Riley of Information Management Services, Inc.; B. O'Brien of Westat, Inc.; B. Kopp and W. Shao of SAIC-Frederick; the WHI investigators (see https://www.whi.org/researchers/SitePages/Write%20a%20Paper.aspx) and the GECCO Coordinating Center. Participating studies (grant support) in the GECCO, CORECT and CCFR GWAS meta-analysis are GECCO (US NIH, U01CA137088 and R01CA059045), DALS (US NIH, R01CA048998), DACHS (German Federal Ministry of Education and Research, BR 1704/6-1, BR 1704/6-3, BR 1704/6-4, CH 117/1-1, 01KH0404 and 01ER0814), HPFS (US NIH, P01CA055075, UM1CA167552, R01137178 and P50CA127003), NHS (US NIH, R01137178, P50CA127003 and P01CA087969), OFCCR (US NIH, U01CA074783), PMH (US NIH, R01CA076366), PHS (US NIH, R01CA042182), VITAL (US NIH, K05CA154337), WHI (US NIH, HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, HHSN271201100004C and 268200764316C) and PLCO (US NIH, Z01CP 010200, U01HG004446 and U01HG 004438). CORECT is supported by the National Cancer Institute as part of the GAME-ON consortium (US NIH, U19CA148107) with additional support from National Cancer Institute grants (R01CA81488 and P30CA014089), the National Human Genome Research Institute at the US NIH (T32HG000040) and the National Institute of Environmental Health Sciences at the US NIH (T32ES013678). CCFR is supported by the National Cancer Institute, US NIH under RFA CA-95-011 and through cooperative agreements with members of the Colon Cancer Family Registry and principal investigators of the Australasian Colorectal Cancer Family Registry (US NIH, U01CA097735), the Familial Colorectal Neoplasia Collaborative Group (US NIH, U01CA074799) (University of Southern California), the Mayo Clinic Cooperative Family Registry for Colon Cancer Studies (US NIH, U01CA074800), the Ontario Registry for Studies of Familial Colorectal Cancer (US NIH, U01CA074783), the Seattle Colorectal Cancer Family Registry (US NIH, U01CA074794) and the University of Hawaii Colorectal Cancer Family Registry (US NIH, U01CA074806). The GWAS work was supported by a National Cancer Institute grant (US NIH, U01CA122839). OFCCR was supported by a GL2 grant from the Ontario Research Fund, Canadian Institutes of Health Research and a Cancer Risk Evaluation (CaRE) Program grant from the Canadian Cancer Society Research Institute. T.J. Hudson and B.W. Zanke are recipients of Senior Investigator Awards from the Ontario Institute for Cancer Research, through support from the Ontario Ministry of Economic Development and Innovation. ASTERISK was funded by a Regional Hospital Clinical Research Program (PHRC) and supported by the Regional Council of Pays de la Loire, the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC), the Association Anne de Bretagne Génétique and the Ligue Régionale Contre le Cancer (LRCC). PLCO data sets were accessed with approval through dbGaP (CGEMS prostate cancer scan, phs000207.v1.p1; CGEMS pancreatic cancer scan, phs000206.v4.p3; and GWAS of Lung Cancer and Smoking, phs000093.v2.p2, which was funded by Z01CP 010200, U01HG004446 and U01HG 004438 from the US NIH).

Author information

Affiliations

  1. Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

    • Ben Zhang
    • , Qiuyin Cai
    • , Jirong Long
    • , Jiajun Shi
    • , Wanqing Wen
    • , Gong Yang
    • , Yanfeng Zhang
    • , Xiao-Ou Shu
    •  & Wei Zheng
  2. State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.

    • Wei-Hua Jia
    • , Zhi-Zhong Pan
    •  & Yi-Xin Zeng
  3. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

    • Koichi Matsuda
  4. Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea.

    • Sun-Seog Kweon
    •  & Min-Ho Shin
  5. Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea.

    • Sun-Seog Kweon
  6. Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan.

    • Keitaro Matsuo
    •  & Satoyo Hosono
  7. Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China.

    • Yong-Bing Xiang
    • , Yu-Tang Gao
    •  & Hong-Lan Li
  8. Molecular Epidemiology Branch, National Cancer Center, Goyang-si, South Korea.

    • Aesun Shin
  9. Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea.

    • Aesun Shin
    •  & Yoon-Ok Ahn
  10. Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea.

    • Sun Ha Jee
    •  & Soriul Kim
  11. Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, South Korea.

    • Dong-Hyun Kim
    •  & Jin-Young Jeong
  12. Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

    • Chun Li
  13. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

    • Bingshan Li
  14. Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

    • Yan Guo
  15. School of Public Health, Sun Yat-sen University, Guangzhou, China.

    • Zefang Ren
  16. Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland, USA.

    • Bu-Tian Ji
  17. Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan.

    • Atsushi Takahashi
    •  & Michiaki Kubo
  18. Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

    • Fumihiko Matsuda
  19. Center for Colorectal Cancer, National Cancer Center, Goyang-si, South Korea.

    • Jae Hwan Oh
    •  & Ji Won Park
  20. Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Andrew T Chan
  21. Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Andrew T Chan
  22. Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.

    • Jenny Chang-Claude
  23. Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.

    • Martha L Slattery
  24. University of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.

    • Stephen B Gruber
    • , Fredrick R Schumacher
    • , Stephanie L Stenzel
    •  & Graham Casey
  25. Department of Surgery, Chonnam National University Medical School, Gwangju, South Korea.

    • Hyeong-Rok Kim
  26. Department of Surgery, Seoul National University Hospital, Seoul, South Korea.

    • Ji Won Park
  27. Department of Hemato-oncology, Chonnam National University Medical School, Gwangju, South Korea.

    • Sang-Hee Cho

Consortia

  1. Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO)

    A complete list of members and affiliations appears in the Acknowledgments.

  2. Colorectal Transdisciplinary (CORECT) Study

    A complete list of members and affiliations appears in the Acknowledgments.

  3. Colon Cancer Family Registry (CCFR)

    A complete list of members and affiliations appears in the Acknowledgments.

Authors

  1. Search for Ben Zhang in:

  2. Search for Wei-Hua Jia in:

  3. Search for Koichi Matsuda in:

  4. Search for Sun-Seog Kweon in:

  5. Search for Keitaro Matsuo in:

  6. Search for Yong-Bing Xiang in:

  7. Search for Aesun Shin in:

  8. Search for Sun Ha Jee in:

  9. Search for Dong-Hyun Kim in:

  10. Search for Qiuyin Cai in:

  11. Search for Jirong Long in:

  12. Search for Jiajun Shi in:

  13. Search for Wanqing Wen in:

  14. Search for Gong Yang in:

  15. Search for Yanfeng Zhang in:

  16. Search for Chun Li in:

  17. Search for Bingshan Li in:

  18. Search for Yan Guo in:

  19. Search for Zefang Ren in:

  20. Search for Bu-Tian Ji in:

  21. Search for Zhi-Zhong Pan in:

  22. Search for Atsushi Takahashi in:

  23. Search for Min-Ho Shin in:

  24. Search for Fumihiko Matsuda in:

  25. Search for Yu-Tang Gao in:

  26. Search for Jae Hwan Oh in:

  27. Search for Soriul Kim in:

  28. Search for Yoon-Ok Ahn in:

  29. Search for Andrew T Chan in:

  30. Search for Jenny Chang-Claude in:

  31. Search for Martha L Slattery in:

  32. Search for Stephen B Gruber in:

  33. Search for Fredrick R Schumacher in:

  34. Search for Stephanie L Stenzel in:

  35. Search for Graham Casey in:

  36. Search for Hyeong-Rok Kim in:

  37. Search for Jin-Young Jeong in:

  38. Search for Ji Won Park in:

  39. Search for Hong-Lan Li in:

  40. Search for Satoyo Hosono in:

  41. Search for Sang-Hee Cho in:

  42. Search for Michiaki Kubo in:

  43. Search for Xiao-Ou Shu in:

  44. Search for Yi-Xin Zeng in:

  45. Search for Wei Zheng in:

Contributions

W.Z. conceived and directed the Asia Colorectal Cancer Consortium and the Shanghai-Vanderbilt Colorectal Cancer Genetics Project. W.-H.J. and Y.-X.Z.; K. Matsuda; S.-S.K.; K. Matsuo; X.-O.S., Y.-B.X. and Y.-T.G.; A.S.; S.H.J.; and D.-H.K. directed CRC projects for the Guangzhou Colorectal Cancer Study, the BioBank Japan Colorectal Cancer Study, the Hwasun Cancer Epidemiology Study–Colon and Rectum Cancer (HCES-CRC), the Aichi Colorectal Cancer Study, the Shanghai studies, the Korea-NCC (National Cancer Center) Colorectal Cancer Study, the KCPS-II Colorectal Cancer Study and the Korea-Seoul Colorectal Cancer Study, respectively. B.Z., Q.C. and W.W. coordinated the project. Q.C. directed laboratory operations. J.S. performed the genotyping experiments. B.Z. performed the statistical and bioinformatics analyses. W.W. contributed to the statistical analyses and data interpretation. A.T. conducted the statistical analyses and imputation for BioBank Japan. B.Z., W.W. and J.L. managed the data. Y.Z. and B.Z. performed the expression analysis for TCGA data. B.Z. and W.Z. wrote the manuscript with significant contributions from X.-O.S., Q.C., J.L., W.W., B.L. and Y.Z. All authors contributed to data and biological sample collection in the original studies included in this project and to manuscript revision. All authors have reviewed and approved the content of the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Wei Zheng.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Note, Supplementary Tables 1–20 and Supplementary Figures 1–6

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.2985

Further reading

  • Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer

    • Stephanie A. Bien
    • , Yu-Ru Su
    • , David V. Conti
    • , Tabitha A. Harrison
    • , Conghui Qu
    • , Xingyi Guo
    • , Yingchang Lu
    • , Demetrius Albanes
    • , Paul L. Auer
    • , Barbara L. Banbury
    • , Sonja I. Berndt
    • , Stéphane Bézieau
    • , Hermann Brenner
    • , Daniel D. Buchanan
    • , Bette J. Caan
    • , Peter T. Campbell
    • , Christopher S. Carlson
    • , Andrew T. Chan
    • , Jenny Chang-Claude
    • , Sai Chen
    • , Charles M. Connolly
    • , Douglas F. Easton
    • , Edith J. M. Feskens
    • , Steven Gallinger
    • , Graham G. Giles
    • , Marc J. Gunter
    • , Jochen Hampe
    • , Jeroen R. Huyghe
    • , Michael Hoffmeister
    • , Thomas J. Hudson
    • , Eric J. Jacobs
    • , Mark A. Jenkins
    • , Ellen Kampman
    • , Hyun Min Kang
    • , Tilman Kühn
    • , Sébastien Küry
    • , Flavio Lejbkowicz
    • , Loic Le Marchand
    • , Roger L. Milne
    • , Li Li
    • , Christopher I. Li
    • , Annika Lindblom
    • , Noralane M. Lindor
    • , Vicente Martín
    • , Caroline E. McNeil
    • , Marilena Melas
    • , Victor Moreno
    • , Polly A. Newcomb
    • , Kenneth Offit
    • , Paul D. P. Pharaoh
    • , John D. Potter
    • , Chenxu Qu
    • , Elio Riboli
    • , Gad Rennert
    • , Núria Sala
    • , Clemens Schafmayer
    • , Peter C. Scacheri
    • , Stephanie L. Schmit
    • , Gianluca Severi
    • , Martha L. Slattery
    • , Joshua D. Smith
    • , Antonia Trichopoulou
    • , Rosario Tumino
    • , Cornelia M. Ulrich
    • , Fränzel J. B. van Duijnhoven
    • , Bethany Van Guelpen
    • , Stephanie J. Weinstein
    • , Emily White
    • , Alicja Wolk
    • , Michael O. Woods
    • , Anna H. Wu
    • , Goncalo R. Abecasis
    • , Graham Casey
    • , Deborah A. Nickerson
    • , Stephen B. Gruber
    • , Li Hsu
    • , Wei Zheng
    •  & Ulrike Peters

    Human Genetics (2019)

  • Discovery of common and rare genetic risk variants for colorectal cancer

    • Jeroen R. Huyghe
    • , Stephanie A. Bien
    • , Tabitha A. Harrison
    • , Hyun Min Kang
    • , Sai Chen
    • , Stephanie L. Schmit
    • , David V. Conti
    • , Conghui Qu
    • , Jihyoun Jeon
    • , Christopher K. Edlund
    • , Peyton Greenside
    • , Michael Wainberg
    • , Fredrick R. Schumacher
    • , Joshua D. Smith
    • , David M. Levine
    • , Sarah C. Nelson
    • , Nasa A. Sinnott-Armstrong
    • , Demetrius Albanes
    • , M. Henar Alonso
    • , Kristin Anderson
    • , Coral Arnau-Collell
    • , Volker Arndt
    • , Christina Bamia
    • , Barbara L. Banbury
    • , John A. Baron
    • , Sonja I. Berndt
    • , Stéphane Bézieau
    • , D. Timothy Bishop
    • , Juergen Boehm
    • , Heiner Boeing
    • , Hermann Brenner
    • , Stefanie Brezina
    • , Stephan Buch
    • , Daniel D. Buchanan
    • , Andrea Burnett-Hartman
    • , Katja Butterbach
    • , Bette J. Caan
    • , Peter T. Campbell
    • , Christopher S. Carlson
    • , Sergi Castellví-Bel
    • , Andrew T. Chan
    • , Jenny Chang-Claude
    • , Stephen J. Chanock
    • , Maria-Dolores Chirlaque
    • , Sang Hee Cho
    • , Charles M. Connolly
    • , Amanda J. Cross
    • , Katarina Cuk
    • , Keith R. Curtis
    • , Albert de la Chapelle
    • , Kimberly F. Doheny
    • , David Duggan
    • , Douglas F. Easton
    • , Sjoerd G. Elias
    • , Faye Elliott
    • , Dallas R. English
    • , Edith J. M. Feskens
    • , Jane C. Figueiredo
    • , Rocky Fischer
    • , Liesel M. FitzGerald
    • , David Forman
    • , Manish Gala
    • , Steven Gallinger
    • , W. James Gauderman
    • , Graham G. Giles
    • , Elizabeth Gillanders
    • , Jian Gong
    • , Phyllis J. Goodman
    • , William M. Grady
    • , John S. Grove
    • , Andrea Gsur
    • , Marc J. Gunter
    • , Robert W. Haile
    • , Jochen Hampe
    • , Heather Hampel
    • , Sophia Harlid
    • , Richard B. Hayes
    • , Philipp Hofer
    • , Michael Hoffmeister
    • , John L. Hopper
    • , Wan-Ling Hsu
    • , Wen-Yi Huang
    • , Thomas J. Hudson
    • , David J. Hunter
    • , Gemma Ibañez-Sanz
    • , Gregory E. Idos
    • , Roxann Ingersoll
    • , Rebecca D. Jackson
    • , Eric J. Jacobs
    • , Mark A. Jenkins
    • , Amit D. Joshi
    • , Corinne E. Joshu
    • , Temitope O. Keku
    • , Timothy J. Key
    • , Hyeong Rok Kim
    • , Emiko Kobayashi
    • , Laurence N. Kolonel
    • , Charles Kooperberg
    • , Tilman Kühn
    • , Sébastien Küry
    • , Sun-Seog Kweon
    • , Susanna C. Larsson
    • , Cecelia A. Laurie
    • , Loic Le Marchand
    • , Suzanne M. Leal
    • , Soo Chin Lee
    • , Flavio Lejbkowicz
    • , Mathieu Lemire
    • , Christopher I. Li
    • , Li Li
    • , Wolfgang Lieb
    • , Yi Lin
    • , Annika Lindblom
    • , Noralane M. Lindor
    • , Hua Ling
    • , Tin L. Louie
    • , Satu Männistö
    • , Sanford D. Markowitz
    • , Vicente Martín
    • , Giovanna Masala
    • , Caroline E. McNeil
    • , Marilena Melas
    • , Roger L. Milne
    • , Lorena Moreno
    • , Neil Murphy
    • , Robin Myte
    • , Alessio Naccarati
    • , Polly A. Newcomb
    • , Kenneth Offit
    • , Shuji Ogino
    • , N. Charlotte Onland-Moret
    • , Barbara Pardini
    • , Patrick S. Parfrey
    • , Rachel Pearlman
    • , Vittorio Perduca
    • , Paul D. P. Pharoah
    • , Mila Pinchev
    • , Elizabeth A. Platz
    • , Ross L. Prentice
    • , Elizabeth Pugh
    • , Leon Raskin
    • , Gad Rennert
    • , Hedy S. Rennert
    • , Elio Riboli
    • , Miguel Rodríguez-Barranco
    • , Jane Romm
    • , Lori C. Sakoda
    • , Clemens Schafmayer
    • , Robert E. Schoen
    • , Daniela Seminara
    • , Mitul Shah
    • , Tameka Shelford
    • , Min-Ho Shin
    • , Katerina Shulman
    • , Sabina Sieri
    • , Martha L. Slattery
    • , Melissa C. Southey
    • , Zsofia K. Stadler
    • , Christa Stegmaier
    • , Yu-Ru Su
    • , Catherine M. Tangen
    • , Stephen N. Thibodeau
    • , Duncan C. Thomas
    • , Sushma S. Thomas
    • , Amanda E. Toland
    • , Antonia Trichopoulou
    • , Cornelia M. Ulrich
    • , David J. Van Den Berg
    • , Franzel J. B. van Duijnhoven
    • , Bethany Van Guelpen
    • , Henk van Kranen
    • , Joseph Vijai
    • , Kala Visvanathan
    • , Pavel Vodicka
    • , Ludmila Vodickova
    • , Veronika Vymetalkova
    • , Korbinian Weigl
    • , Stephanie J. Weinstein
    • , Emily White
    • , Aung Ko Win
    • , C. Roland Wolf
    • , Alicja Wolk
    • , Michael O. Woods
    • , Anna H. Wu
    • , Syed H. Zaidi
    • , Brent W. Zanke
    • , Qing Zhang
    • , Wei Zheng
    • , Peter C. Scacheri
    • , John D. Potter
    • , Michael C. Bassik
    • , Anshul Kundaje
    • , Graham Casey
    • , Victor Moreno
    • , Goncalo R. Abecasis
    • , Deborah A. Nickerson
    • , Stephen B. Gruber
    • , Li Hsu
    •  & Ulrike Peters

    Nature Genetics (2019)

  • A quantitative multimodal metabolomic assay for colorectal cancer

    • Farshad Farshidfar
    • , Karen A. Kopciuk
    • , Robert Hilsden
    • , S. Elizabeth McGregor
    • , Vera C. Mazurak
    • , W. Donald Buie
    • , Anthony MacLean
    • , Hans J. Vogel
    •  & Oliver F. Bathe

    BMC Cancer (2018)

  • Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci

    • Monica Y. Sanchez-Contreras
    • , Naomi Kouri
    • , Casey N. Cook
    • , Daniel J. Serie
    • , Michael G. Heckman
    • , NiCole A. Finch
    • , Richard J. Caselli
    • , Ryan J. Uitti
    • , Zbigniew K. Wszolek
    • , Neill Graff-Radford
    • , Leonard Petrucelli
    • , Li-San Wang
    • , Gerard D. Schellenberg
    • , Dennis W. Dickson
    • , Rosa Rademakers
    •  & Owen A. Ross

    Molecular Neurodegeneration (2018)

  • Colorectal Cancer-Associated Genes Are Associated with Tooth Agenesis and May Have a Role in Tooth Development

    • Meredith A. Williams
    • , Claudia Biguetti
    • , Miguel Romero-Bustillos
    • , Kanwal Maheshwari
    • , Nuriye Dinckan
    • , Franco Cavalla
    • , Xiaoming Liu
    • , Renato Silva
    • , Sercan Akyalcin
    • , Z. Oya Uyguner
    • , Alexandre R. Vieira
    • , Brad A. Amendt
    • , Walid D. Fakhouri
    •  & Ariadne Letra

    Scientific Reports (2018)