Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies

Abstract

The functions of the plant body rely on interactions among distinct and nonequivalent cell types. The comparison of transcriptomes from different cell types should expose the transcriptional networks that underlie cellular attributes and contributions. Using laser microdissection and microarray profiling, we have produced a cell type transcriptome atlas that includes 40 cell types from rice (Oryza sativa) shoot, root and germinating seed at several developmental stages, providing patterns of cell specificity for individual genes and gene classes. Cell type comparisons uncovered previously unrecognized properties, including cell-specific promoter motifs and coexpressed cognate binding factor candidates, interaction partner candidates and hormone response centers. We inferred developmental regulatory hierarchies of gene expression in specific cell types by comparison of several stages within root, shoot and embryo.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Global patterns of cellular gene expression.
Figure 2: Cell-specific transcripts and selected metabolic pathways.
Figure 3: Cellular distributions of transcripts from selected hormone-related genes.
Figure 4: Identification of candidate cis and trans transcriptional control cognate partners on the basis of cellular coexpression.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Yu, H., Xia, Y., Trifonov, V. & Gerstein, M. Design principles of molecular networks revealed by global comparisons and composite motifs. Genome Biol. 7, R55 (2006).

    Article  Google Scholar 

  2. Birnbaum, K. et al. A gene expression map of the Arabidopsis root. Science 302, 1956–1960 (2003).

    CAS  Article  Google Scholar 

  3. Brady, S.M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806 (2007).

    CAS  Article  Google Scholar 

  4. Nelson, T., Gandotra, N. & Tausta, S.L. Plant cell types: reporting and sampling with new technologies. Curr. Opin. Plant Biol. 11, 567–573 (2008).

    CAS  Article  Google Scholar 

  5. Nelson, T., Tausta, S.L., Gandotra, N. & Liu, T. Laser microdissection of plant tissue: what you see is what you get. Annu. Rev. Plant Biol. 57, 181–201 (2006).

    CAS  Article  Google Scholar 

  6. Ishiwatari, Y. et al. Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205, 12–22 (1998).

    CAS  Article  Google Scholar 

  7. Carland, F.M. & Nelson, T. Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16, 1263–1275 (2004).

    CAS  Article  Google Scholar 

  8. Petricka, J.J. & Nelson, T.M. Arabidopsis nucleolin affects plant development and patterning. Plant Physiol. 144, 173–186 (2007).

    CAS  Article  Google Scholar 

  9. Zhan, S., Horrocks, J. & Lukens, L.N. Islands of co-expressed neighbouring genes in Arabidopsis thaliana suggest higher-order chromosome domains. Plant J. 45, 347–357 (2006).

    CAS  Article  Google Scholar 

  10. Hurst, L.D., Pal, C. & Lercher, M.J. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5, 299–310 (2004).

    CAS  Article  Google Scholar 

  11. Lee, S., Jo, M., Lee, J., Koh, S.S. & Kim, S. Identification of novel universal housekeeping genes by statistical analysis of microarray data. J. Biochem. Mol. Biol. 40, 226–231 (2007).

    CAS  PubMed  Google Scholar 

  12. Yang, G.X. et al. Microarray analysis of brassinosteroids- and gibberellin-regulated gene expression in rice seedlings. Mol. Genet. Genomics 271, 468–478 (2004).

    CAS  Article  Google Scholar 

  13. Yazaki, J. et al. Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol. Genomics 17, 87–100 (2004).

    CAS  Article  Google Scholar 

  14. Liu, X. et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315, 1712–1716 (2007).

    CAS  Article  Google Scholar 

  15. Razem, F.A., El-Kereamy, A., Abrams, S.R. & Hill, R.D. The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290–294 (2006).

    CAS  Article  Google Scholar 

  16. Shen, Y.Y. et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823–826 (2006).

    CAS  Article  Google Scholar 

  17. Abe, H. et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63–78 (2003).

    CAS  Article  Google Scholar 

  18. Edwards, D., Murray, J.A. & Smith, A.G. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117, 1015–1022 (1998).

    CAS  Article  Google Scholar 

  19. Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998).

    CAS  Article  Google Scholar 

  20. Coustry, F., Sinha, S., Maity, S.N. & Crombrugghe, B. The two activation domains of the CCAAT-binding factor CBF interact with the dTAFII110 component of the Drosophila TFIID complex. Biochem. J. 331, 291–297 (1998).

    CAS  Article  Google Scholar 

  21. Gusmaroli, G., Tonelli, C. & Mantovani, R. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene 283, 41–48 (2002).

    CAS  Article  Google Scholar 

  22. Ma, L. et al. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res. 15, 1274–1283 (2005).

    CAS  Article  Google Scholar 

  23. Churchill, G.A. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32 Suppl, 490–495 (2002).

    CAS  Article  Google Scholar 

  24. Kulldorff, M., Rand, K., Gherman, G., Williams, W. & DeFrancesco, D. SaTScan v2.1: software for the spatial and space-time scan statistics. US National Cancer Institutehttp://www.cancer.gov/prevention/BB/SaTScan.html##〉 (1998).

  25. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    CAS  Article  Google Scholar 

  26. Saldanha, A.J. Java Treeview–extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    CAS  Article  Google Scholar 

  27. Beissbarth, T. & Speed, T.P. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20, 1464–1465 (2004).

    CAS  Article  Google Scholar 

  28. Du, L. et al. The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics 89, 697–707 (2007).

    CAS  Article  Google Scholar 

  29. Ito, Y. & Kurata, N. Identification and characterization of cytokinin-signalling gene families in rice. Gene 382, 57–65 (2006).

    CAS  Article  Google Scholar 

  30. Jain, M. et al. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct. Integr. Genomics 6, 47–59 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Li for valuable database advice and assistance and P. Wu (Zhejiang University) for the rice root micrograph in Figure 3. This work was supported by US National Science Foundation Plant Genome Program grant DBI-0325821 to T.N., X.-W.D. and H.Z. T.L. and M.C. were supported in part by Peking-Yale Monsanto Fellowships.

Author information

Authors and Affiliations

Authors

Contributions

T.N., X.-W.D. and H.Z. conceived and oversaw the research. S.L.T., N.G. and T.L. performed cell isolations, RNA isolations and informatic analysis. Y.J., H.Z. and L.M. performed microarray hybridizations and informatic analysis. T.C., N.K.C. and M.C. performed cell and RNA isolations. N.S. designed and performed statistical methods for data processing and analysis. M.H. designed and implemented the atlas database and analytical tools. T.N. prepared the manuscript, with assistance from all coauthors.

Note: Supplementary information is available on the Nature Genetics website.

Corresponding author

Correspondence to Timothy Nelson.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 2128 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiao, Y., Lori Tausta, S., Gandotra, N. et al. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41, 258–263 (2009). https://doi.org/10.1038/ng.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.282

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing