Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos

Abstract

It has been proposed that ciliated cells that produce a leftward fluid flow mediate left-right patterning in many vertebrate embryos. The cilia on these cells combine features of primary sensory and motile cilia, but how this cilia subtype is specified is unknown. We address this issue by analyzing the Xenopus and zebrafish homologs of Foxj1, a forkhead transcription factor necessary for ciliogenesis in multiciliated cells of the mouse. We show that the cilia that underlie left-right patterning on the Xenopus gastrocoel roof plate (GRP) and zebrafish Kupffer's vesicle are severely shortened or fail to form in Foxj1 morphants. We also show that misexpressing Foxj1 is sufficient to induce ectopic GRP-like cilia formation in frog embryos. Microarray analysis indicates that Xenopus Foxj1 induces the formation of cilia by upregulating the expression of motile cilia genes. These results indicate that Foxj1 is a critical determinant in the specification of cilia used in left-right patterning.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Knockdown of Foxj1 activity inhibits ciliogenesis in the zebrafish Kupffer's vesicle and Xenopus GRP.
Figure 2: Foxj1 morpholinos inhibit ciliogenesis in Xenopus skin cells.
Figure 3: Xenopus Foxj1 RNA misexpression in surface epithelial cells induces ectopic cilia formation.
Figure 4: Biciliated cells on the GRP and induced ectopically by Foxj1.
Figure 5: Validation of gene expression regulated by Foxj1.
Figure 6: Model for cilia subtype specification.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Satir, P. & Christensen, S.T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 (2007).

    Article  CAS  Google Scholar 

  2. Spektor, A., Tsang, W.Y., Khoo, D. & Dynlacht, B.D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).

    Article  CAS  Google Scholar 

  3. Whitsett, J.A. & Tichelaar, J.W. Forkhead transcription factor HFH-4 and respiratory epithelial cell differentiation. Am. J. Respir. Cell Mol. Biol. 21, 153–154 (1999).

    Article  CAS  Google Scholar 

  4. Hackett, B.P. et al. Primary structure of hepatocyte nuclear factor/forkhead homologue 4 and characterization of gene expression in the developing respiratory and reproductive epithelium. Proc. Natl. Acad. Sci. USA 92, 4249–4253 (1995).

    Article  CAS  Google Scholar 

  5. Pelletier, G.J., Brody, S.L., Liapis, H., White, R.A. & Hackett, B.P. A human forkhead/winged-helix transcription factor expressed in developing pulmonary and renal epithelium. Am. J. Physiol. 274, L351–L359 (1998).

    CAS  PubMed  Google Scholar 

  6. Lim, L., Zhou, H. & Costa, R.H. The winged helix transcription factor HFH-4 is expressed during choroid plexus epithelial development in the mouse embryo. Proc. Natl. Acad. Sci. USA 94, 3094–3099 (1997).

    Article  CAS  Google Scholar 

  7. Huang, T. et al. Foxj1 is required for apical localization of ezrin in airway epithelial cells. J. Cell Sci. 116, 4935–4945 (2003).

    Article  CAS  Google Scholar 

  8. Gomperts, B.N., Gong-Cooper, X. & Hackett, B.P. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J. Cell Sci. 117, 1329–1337 (2004).

    Article  CAS  Google Scholar 

  9. Pan, J., You, Y., Huang, T. & Brody, S.L. RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J. Cell Sci. 120, 1868–1876 (2007).

    Article  CAS  Google Scholar 

  10. Chen, J., Knowles, H.J., Hebert, J.L. & Hackett, B.P. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J. Clin. Invest. 102, 1077–1082 (1998).

    Article  CAS  Google Scholar 

  11. Brody, S.L., Yan, X.H., Wuerffel, M.K., Song, S.K. & Shapiro, S.D. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am. J. Respir. Cell Mol. Biol. 23, 45–51 (2000).

    Article  CAS  Google Scholar 

  12. Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. Nodal flow and the generation of left-right asymmetry. Cell 125, 33–45 (2006).

    Article  CAS  Google Scholar 

  13. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    Article  CAS  Google Scholar 

  14. Takeda, S. et al. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J. Cell Biol. 145, 825–836 (1999).

    Article  CAS  Google Scholar 

  15. Zhang, M., Bolfing, M.F., Knowles, H.J., Karnes, H. & Hackett, B.P. Foxj1 regulates asymmetric gene expression during left-right axis patterning in mice. Biochem. Biophys. Res. Commun. 324, 1413–1420 (2004).

    Article  CAS  Google Scholar 

  16. Schweickert, A. et al. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17, 60–66 (2007).

    Article  CAS  Google Scholar 

  17. Essner, J.J., Amack, J.D., Nyholm, M.K., Harris, E.B. & Yost, H.J. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247–1260 (2005).

    Article  CAS  Google Scholar 

  18. Essner, J.J. et al. Conserved function for embryonic nodal cilia. Nature 418, 37–38 (2002).

    Article  CAS  Google Scholar 

  19. Kramer-Zucker, A.G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).

    Article  CAS  Google Scholar 

  20. Pohl, B.S. & Knochel, W. Isolation and developmental expression of Xenopus FoxJ1 and FoxK1. Dev. Genes Evol. 214, 200–205 (2004).

    Article  CAS  Google Scholar 

  21. Stubbs, J.L., Davidson, L., Keller, R. & Kintner, C. Radial intercalation of ciliated cells during Xenopus skin development. Development 133, 2507–2515 (2006).

    Article  CAS  Google Scholar 

  22. Mitchell, B., Jacobs, R., Li, J., Chien, S. & Kintner, C. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447, 97–101 (2007).

    Article  CAS  Google Scholar 

  23. Park, T.J., Haigo, S.L. & Wallingford, J.B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat. Genet. 38, 303–311 (2006).

    Article  CAS  Google Scholar 

  24. You, Y. et al. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L650–L657 (2004).

    Article  CAS  Google Scholar 

  25. Deblandre, G.A., Wettstein, D.A., Koyano-Nakagawa, N. & Kintner, C. A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715–4728 (1999).

    CAS  PubMed  Google Scholar 

  26. Liu, Y., Pathak, N., Kramer-Zucker, A. & Drummond, I.A. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134, 1111–1122 (2007).

    Article  CAS  Google Scholar 

  27. Ma, M. & Jiang, Y.J. Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet. 3, e18 (2007).

    Article  Google Scholar 

  28. Feistel, K. & Blum, M. Three types of cilia including a novel 9+4 axoneme on the notochordal plate of the rabbit embryo. Dev. Dyn. 235, 3348–3358 (2006).

    Article  CAS  Google Scholar 

  29. Inglis, P.N., Boroevich, K.A. & Leroux, M.R. Piecing together a ciliome. Trends Genet. 22, 491–500 (2006).

    Article  CAS  Google Scholar 

  30. Sapiro, R. et al. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol. Cell. Biol. 22, 6298–6305 (2002).

    Article  CAS  Google Scholar 

  31. Tanaka, H. et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol. Cell. Biol. 24, 7958–7964 (2004).

    Article  CAS  Google Scholar 

  32. Supp, D.M., Potter, S.S. & Brueckner, M. Molecular motors: the driving force behind mammalian left-right development. Trends Cell Biol. 10, 41–45 (2000).

    Article  CAS  Google Scholar 

  33. McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 61–73 (2003).

    Article  CAS  Google Scholar 

  34. Marshall, W.F. & Kintner, C. Cilia orientation and the fluid mechanics of development. Curr. Opin. Cell Biol. 20, 48–52 (2008).

    Article  CAS  Google Scholar 

  35. Sive, H., Grainger, R.M. & Harland, R.M. The Early Development of Xenopus laevis: A Laboratory Manual (Cold Spring Harbor Press, Plainview, New York, 1998).

  36. Wettstein, D.A., Turner, D.L. & Kintner, C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693–702 (1997).

    CAS  PubMed  Google Scholar 

  37. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  38. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    Article  CAS  Google Scholar 

  39. Harland, R.M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991).

    Article  CAS  Google Scholar 

  40. Davidson, L.A., Hoffstrom, B.G., Keller, R. & DeSimone, D.W. Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin alpha(5)beta(1), fibronectin, and tissue geometry. Dev. Biol. 242, 109–129 (2002).

    Article  CAS  Google Scholar 

  41. Zapala, M.A., Lockhart, D.J., Pankratz, D.G., Garcia, A.J. & Barlow, C. Software and methods for oligonucleotide and cDNA array data analysis. Genome Biol. 3 SOFTWARE0001 (2002).

  42. Wilson, P.A., Oster, G. & Keller, R. Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 105, 155–166 (1989).

    CAS  PubMed  Google Scholar 

  43. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J. & Tsai, H.J. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30–40 (2003).

    Article  CAS  Google Scholar 

  44. Thisse, C., Thisse, B., Schilling, T.F. & Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Kintner laboratory for comments on the manuscript, M. Wood for technical assistance with the TEM and B. Mitchell for assistance with high-speed photography in collaboration with C. Yu, P. Taborek and F. Huisman in the Department of Physics at University of California, Irvine. The work was supported by grants from the Kanae Foundation to I.O., from the G. Harold and Leila Y. Mathers and Cellex MEC foundations and US National Institutes of Health to J.C.I.B. and from the US NIH to C.K.

Author information

Authors and Affiliations

Authors

Contributions

J.L.S., I.O., J.C.I.B. and C.K. designed the study; J.L.S. and I.O. carried out zebrafish experiments; J.L.S. and C.K. carried out Xenopus experiments; all authors contributed to the interpretation of results and the writing of the manuscript.

Corresponding author

Correspondence to Chris Kintner.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 2 (PDF 920 kb)

Supplementary Movie 1

Example of an ectopic cilium induced by Foxj1 with a rotational beat pattern. The movie is 0.035 seconds in duration, and the cilium is beating at 25 Hz. (AVI 2751 kb)

Supplementary Movie 2

Example of an ectopic cilium induced by Foxj1 with a wipe-like beat pattern. The movie is 0.070 seconds in duration, and the cilium is beating at 15 Hz. (AVI 1585 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stubbs, J., Oishi, I., Izpisúa Belmonte, J. et al. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 40, 1454–1460 (2008). https://doi.org/10.1038/ng.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing