The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole-genome and exome sequencing of 40 cases, identified two subtypes that differ in the severity of aneuploidy, transcriptional profiles and submicroscopic genetic alterations. Near-haploid ALL with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase signaling and Ras signaling (71%) and the lymphoid transcription factor gene IKZF3 (encoding AIOLOS; 13%). In contrast, low-hypodiploid ALL with 32–39 chromosomes are characterized by alterations in TP53 (91.2%) that are commonly present in nontumor cells, IKZF2 (encoding HELIOS; 53%) and RB1 (41%). Both near-haploid and low-hypodiploid leukemic cells show activation of Ras-signaling and phosphoinositide 3-kinase (PI3K)-signaling pathways and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


Primary accessions

Gene Expression Omnibus


  1. 1.

    et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 360, 2730–2741 (2009).

  2. 2.

    et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21, 1258–1266 (2007).

  3. 3.

    et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

  4. 4.

    et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 24, 1258–1264 (2010).

  5. 5.

    et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

  6. 6.

    et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

  7. 7.

    et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br. J. Haematol. 125, 552–559 (2004).

  8. 8.

    et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children's cancer group. Blood 94, 4036–4045 (1999).

  9. 9.

    et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110, 1112–1115 (2007).

  10. 10.

    et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 98, 2715–2722 (2003).

  11. 11.

    Cytogenetics of acute leukemias. in Childhood Leukemias (ed. Pui, C.H.) (Cambridge University Press, 2012).

  12. 12.

    et al. Masked hypodiploidy: hypodiploid acute lymphoblastic leukemia (ALL). in Children mimicking hyperdiploid ALL: a report from the Children's Oncology Group (COG) AALL03B1 study. Blood: ASH Annual Meeting Abstracts 114, 1580 (2009).

  13. 13.

    & Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann. Intern. Med. 71, 747–752 (1969).

  14. 14.

    Li-Fraumeni syndrome. Genes Cancer 2, 475–484 (2011).

  15. 15.

    et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

  16. 16.

    et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62, 599–608 (1990).

  17. 17.

    et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62, 193–201 (1990).

  18. 18.

    et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187–192 (1990).

  19. 19.

    et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249, 181–186 (1990).

  20. 20.

    et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood 92, 267–272 (1998).

  21. 21.

    et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 111, 4322–4328 (2008).

  22. 22.

    et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  23. 23.

    , & Neurofibromatosis-Noonan syndrome and acute lymphoblastic leukemia: a report of two cases. J. Pediatr. Hematol. Oncol. 21, 158–160 (1999).

  24. 24.

    , & Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br. J. Cancer 70, 969–972 (1994).

  25. 25.

    et al. Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat. 32, 213–219 (2011).

  26. 26.

    et al. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair (Amst.) 5, 1246–1258 (2006).

  27. 27.

    et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

  28. 28.

    , & Chromosome evolution of near-haploid clones in an established human acute lymphoblastic leukemia cell line (NALM-16). J. Natl. Cancer Inst. 64, 485–493 (1980).

  29. 29.

    et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 106, 2183–2185 (2005).

  30. 30.

    et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am. J. Hum. Genet. 78, 279–290 (2006).

  31. 31.

    et al. Germ-line mutation of the NRAS gene may be responsible for the development of juvenile myelomonocytic leukaemia. Br. J. Haematol. 147, 706–709 (2009).

  32. 32.

    et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood 109, 5477–5480 (2007).

  33. 33.

    et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–1003 (2000).

  34. 34.

    et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604 (2000).

  35. 35.

    , , , & Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol. Cell. Biol. 23, 2017–2028 (2003).

  36. 36.

    et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355 (2004).

  37. 37.

    , , , & Modulation of proximal signaling in normal and transformed B cells by transmembrane adapter Cbp/PAG. Exp. Cell Res. 318, 1611–1619 (2012).

  38. 38.

    , & p53 in hematologic malignancies. Blood 84, 2412–2421 (1994).

  39. 39.

    et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 118, 3080–3087 (2011).

  40. 40.

    et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum. Mutat. 6, 622–629 (2007).

  41. 41.

    , , & Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

  42. 42.

    et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 29, 3185–93 (2011).

  43. 43.

    et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84, 3148–3157 (1994).

  44. 44.

    & Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 2, 445–452 (1988).

  45. 45.

    et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

  46. 46.

    & Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol. Cell Biol. 81, 171–175 (2003).

  47. 47.

    et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

  48. 48.

    et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

  49. 49.

    et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10, 345–355 (1999).

  50. 50.

    et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

  51. 51.

    et al. A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells. Mol. Immunol. 47, 1595–1600 (2010).

  52. 52.

    et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197–1209 (2006).

  53. 53.

    et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 12, 782–796 (1998).

  54. 54.

    et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr. Bio. 8, 508–15 (1998).

  55. 55.

    & CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

  56. 56.

    et al. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J. 24, 3846–3858 (2005).

  57. 57.

    & The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

  58. 58.

    et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

  59. 59.

    , , & p53 mutations in human cancers. Science 253, 49–53 (1991).

  60. 60.

    Retinoblastoma. Adv. Exp. Med. Biol. 685, 220–227 (2010).

  61. 61.

    et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

  62. 62.

    et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

  63. 63.

    & Links between mutant p53 and genomic instability. J. Cell. Biochem. 113, 433–439 (2012).

  64. 64.

    et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc. Natl. Acad. Sci. USA 107, 14188–14193 (2010).

  65. 65.

    & Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010).

  66. 66.

    & The retinoblastoma protein in osteoblast differentiation and osteosarcoma. Curr. Mol. Med. 6, 809–817 (2006).

  67. 67.

    , , & Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization. EMBO J. 18, 3419–3430 (1999).

  68. 68.

    et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

  69. 69.

    et al. Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 117, 3585–3595 (2011).

  70. 70.

    et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

  71. 71.

    et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

  72. 72.

    et al. The Pediatric Cancer Genome Project. Nat. Genet. 44, 619–622 (2012).

  73. 73.

    et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

  74. 74.

    et al. dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 20, 1233–1240 (2004).

  75. 75.

    & A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

  76. 76.

    & Bioinformatics Methods and Protocols (Methods in Molecular Biology). (Humana Press, 2000).

  77. 77.

    et al. SNPdetector: a software tool for sensitive and accurate SNP detection. PLOS Comput. Biol. 1, e53 (2005).

  78. 78.

    et al. PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing data. Genome Res. 17, 659–666 (2007).

  79. 79.

    et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

  80. 80.

    , , , & Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2, 507–514 (2002).

  81. 81.

    et al. Germline KRAS mutations cause Noonan syndrome. Nat. Genet. 38, 331–336 (2006).

  82. 82.

    et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br. J. Cancer 35, 1–39 (1977).

  83. 83.

    Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170 (1966).

  84. 84.

    & A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 94, 496–509 (1999).

  85. 85.

    R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2006).

Download references


We thank J. Morris, E. Walker and A. Merriman for performing SNP and gene expression microarrays and G. Zambetti and P. Brindle for insightful discussions of TP53 and CREBBP mutational data, respectively. We also thank H. Mulder, R. Collins, M. Barbato, E. Stonerock, E. Pinto and M. Ellis for technical assistance, the Tissue Resources Core facility and the Flow Cytometry and Cell Sorting Core facility of the St. Jude Children's Research Hospital (SJCRH). This work was supported by The Henry Schueler 41&9 Foundation in conjunction with Partnership for Cures, the St. Baldrick's Foundation, US National Cancer Institute (NCI) grant RC4CA156329, US National Institutes of Health (NIH) grants CA21765 and U01 GM92666, the American Association for Cancer Research (AACR) Gertrude B. Elion Cancer Research Award and the American Lebanese and Syrian Associated Charities (ALSAC) of SJCRH. Support was also provided by NCI grants to the Children's Oncology Group, including CA98543, CA98413 and CA114766. L.H. was supported by the Swedish Research Council. S.P.H. is the Ergen Family Chair in Pediatric Cancer. M.L.L. is a Clinical Scholar in the Leukemia Lymphoma Society and supported by the Frank A. Campini Foundation. C.G.M. is a Pew Scholar in the Biomedical Sciences and a St. Baldrick's Scholar. M.L.L. and E.D.-F. were supported by the Team Connor Foundation, and S.N.P. was supported by 5R25CA023944 from NCI. This paper is dedicated to Henry 'Hank' Schueler who died from complications of hypodiploid ALL and whose Foundation is dedicated to finding a cure for hypodiploid ALL in his memory and to James B. Nachman who was instrumental in the genesis of this project and who recently passed away.

Author information

Author notes

    • Samir N Patel
    •  & Susan L Heatley

    Present addresses: Weill Cornell Medical College, Cornell University, New York, New York, USA (S.N.P.) and Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia (S.L.H.).

    • Linda Holmfeldt
    •  & Lei Wei

    These authors contributed equally to this work.


  1. Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    • Linda Holmfeldt
    • , Lei Wei
    • , Debbie Payne-Turner
    • , Michelle Churchman
    • , Anna Andersson
    • , Shann-Ching Chen
    • , Kelly McCastlain
    • , Jing Ma
    • , Samir N Patel
    • , Susan L Heatley
    • , Letha A Phillips
    • , Guangchun Song
    • , David W Ellison
    • , Sheila A Shurtleff
    • , Susana C Raimondi
    • , James R Downing
    •  & Charles G Mullighan
  2. Department of Pediatrics, University of California School of Medicine, San Francisco, California, USA.

    • Ernesto Diaz-Flores
    •  & Mignon L Loh
  3. Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    • Michael Walsh
    • , Ching-Hon Pui
    •  & Raul C Ribeiro
  4. Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    • Jinghui Zhang
    • , Jared Becksfort
    • , Gang Wu
    • , Matthew Parker
    • , Xiang Chen
    • , Michael Rusch
    • , Erin Hedlund
    • , Robert Huether
    • , Elaine R Mardis
    •  & Richard K Wilson
  5. The Genome Institute at Washington University, St. Louis, Missouri, USA.

    • Li Ding
    • , Charles Lu
    • , Robert S Fulton
    • , Lucinda L Fulton
    • , Yashodhan Tabib
    • , David J Dooling
    • , Kerri Ochoa
    • , Elaine R Mardis
    •  & Richard K Wilson
  6. Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA.

    • Li Ding
    • , Robert S Fulton
    • , Lucinda L Fulton
    •  & David J Dooling
  7. Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.

    • Anna Andersson
  8. Pediatric Cancer Genome Project, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    • John Easton
    • , Kristy Boggs
    •  & Bhavin Vadodaria
  9. Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    • Christina Drenberg
    •  & Sharyn Baker
  10. Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    • Deqing Pei
    •  & Cheng Cheng
  11. Princess Margaret Hospital/University Health Network, University of Toronto, Ontario, Canada.

    • Mark Minden
  12. Division of Haematology, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia.

    • Ian D Lewis
    •  & L Bik To
  13. Oncology/Haematology Unit, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.

    • Paula Marlton
  14. Department of Clinical Haematology and Bone Marrow Transplant, Royal Melbourne Hospital, Melbourne, Victoria, Australia.

    • Andrew W Roberts
  15. Section of Hematology/Oncology, University of Chicago Medicine, Chicago, Illinois, USA.

    • Gordana Raca
    •  & Wendy Stock
  16. The Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    • Geoffrey Neale
  17. Department of Human and Animal Cell Cultures, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.

    • Hans G Drexler
  18. Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.

    • Ross A Dickins
  19. Department of Biostatistics, College of Medicine, University of Florida, Gainesville, Florida, USA. .

    • Meenakshi Devidas
  20. Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.

    • Andrew J Carroll
  21. Department of Pathology, College of Medicine, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

    • Nyla A Heerema
  22. Department of Laboratory Medicine, Seattle Children's Hospital, Seattle, Washington, USA.

    • Brent Wood
  23. Division of Hematologic Pathology, Johns Hopkins Hospital, Baltimore, Maryland, USA.

    • Michael J Borowitz
  24. Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.

    • Julie M Gastier-Foster
  25. Department of Pathology, Ohio State University, Columbus, Ohio, USA.

  26. Department of Pediatrics, Ohio State University, Columbus, Ohio, USA.

    • Julie M Gastier-Foster
  27. Siteman Cancer Center, Washington University, St. Louis, Missouri, USA.

    • Elaine R Mardis
    •  & Richard K Wilson
  28. Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation and Center for Cancer and Blood Disorders, University of Colorado Denver School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA.

    • Stephen P Hunger


  1. Search for Linda Holmfeldt in:

  2. Search for Lei Wei in:

  3. Search for Ernesto Diaz-Flores in:

  4. Search for Michael Walsh in:

  5. Search for Jinghui Zhang in:

  6. Search for Li Ding in:

  7. Search for Debbie Payne-Turner in:

  8. Search for Michelle Churchman in:

  9. Search for Anna Andersson in:

  10. Search for Shann-Ching Chen in:

  11. Search for Kelly McCastlain in:

  12. Search for Jared Becksfort in:

  13. Search for Jing Ma in:

  14. Search for Gang Wu in:

  15. Search for Samir N Patel in:

  16. Search for Susan L Heatley in:

  17. Search for Letha A Phillips in:

  18. Search for Guangchun Song in:

  19. Search for John Easton in:

  20. Search for Matthew Parker in:

  21. Search for Xiang Chen in:

  22. Search for Michael Rusch in:

  23. Search for Kristy Boggs in:

  24. Search for Bhavin Vadodaria in:

  25. Search for Erin Hedlund in:

  26. Search for Christina Drenberg in:

  27. Search for Sharyn Baker in:

  28. Search for Deqing Pei in:

  29. Search for Cheng Cheng in:

  30. Search for Robert Huether in:

  31. Search for Charles Lu in:

  32. Search for Robert S Fulton in:

  33. Search for Lucinda L Fulton in:

  34. Search for Yashodhan Tabib in:

  35. Search for David J Dooling in:

  36. Search for Kerri Ochoa in:

  37. Search for Mark Minden in:

  38. Search for Ian D Lewis in:

  39. Search for L Bik To in:

  40. Search for Paula Marlton in:

  41. Search for Andrew W Roberts in:

  42. Search for Gordana Raca in:

  43. Search for Wendy Stock in:

  44. Search for Geoffrey Neale in:

  45. Search for Hans G Drexler in:

  46. Search for Ross A Dickins in:

  47. Search for David W Ellison in:

  48. Search for Sheila A Shurtleff in:

  49. Search for Ching-Hon Pui in:

  50. Search for Raul C Ribeiro in:

  51. Search for Meenakshi Devidas in:

  52. Search for Andrew J Carroll in:

  53. Search for Nyla A Heerema in:

  54. Search for Brent Wood in:

  55. Search for Michael J Borowitz in:

  56. Search for Julie M Gastier-Foster in:

  57. Search for Susana C Raimondi in:

  58. Search for Elaine R Mardis in:

  59. Search for Richard K Wilson in:

  60. Search for James R Downing in:

  61. Search for Stephen P Hunger in:

  62. Search for Mignon L Loh in:

  63. Search for Charles G Mullighan in:


L.H., C.G.M., M.L.L. and S.P.H. designed the experiments. L.H. and D.P.-T. prepared patient samples and generated xenografts. L.H., E.D.-F., M.C., K.M., S.N.P., L.A.P. and S.L.H. performed biochemical analyses. C.D. and S.B. performed ex vivo drug studies. L.H. and J.M. analyzed SNP array data. L.H. and J.E. performed transcriptome sequencing. K.B. performed exome sequencing. L.H., D.P.-T. and B.V. performed sequencing validation. L.W., J.Z., L.D., J.B., Y.T., X.C. and C.L. analyzed sequence data. S.-C.C., A.A., G.N. and L.H. analyzed expression microarray data. M.R., E.H., M.P., G.W., R.H. and G.S. provided bioinformatic support. D.P., C.C. and M.D. performed statistical analyses. R.S.F. and L.L.F. supervised whole-genome sequencing data generation. D.J.D. supervised the automated analysis pipeline. S.C.R., A.J.C. and N.A.H. performed cytogenetic analyses. M.W., C.-H.P., M.M., I.D.L., L.B.T., P.M., A.W.R., G.R., W.S., M.L.L., J.M.G.-F., R.C.R., B.W., M.J.B. and S.P.H. provided clinical samples and data. D.W.E. performed pathological analyses. R.A.D. and H.G.D. provided important reagents. L.H. and C.G.M. wrote the manuscript. L.H., L.W., J.Z., L.D., D.P.-T., M.C., A.A., S.-C.C., K.M., J.B., J.M., G.W., G.S., J.E., M.P., X.C., M.R., E.H., C.L., R.S.F., L.L.F., D.J.D., K.O., S.A.S., C.-H.P., E.R.M., R.K.W., J.R.D. and C.G.M. are part of the St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Charles G Mullighan.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Note and Supplementary Tables 3–6, 9, 13, 16–20, 23, 24 and 27–34 and Supplementary Figures 1–22

Excel files

  1. 1.

    Supplementary Table 1

    Pediatric hypodiploid ALL cohort

  2. 2.

    Supplementary Table 2

    Adult ALL cohort

  3. 3.

    Supplementary Table 7

    Mutations identified by next-generation sequencing

  4. 4.

    Supplementary Table 8

    Structural variations identified by whole genome sequencing

  5. 5.

    Supplementary Table 10

    Regions of copy number alterations and copy-neutral loss-of-heterozygosity in hypodiploid ALL

  6. 6.

    Supplementary Table 11

    Mutations identified by Sanger sequencing in the hypodiploid ALL cohort

  7. 7.

    Supplementary Table 12

    Copy number alterations and mutations

  8. 8.

    Supplementary Table 14

    Differential expression analysis – NH versus masked NH

  9. 9.

    Supplementary Table 15

    Differential expression analysis – LH versus masked LH

  10. 10.

    Supplementary Table 21

    Differential expression analysis – NH versus LH

  11. 11.

    Supplementary Table 22

    Gene set enrichment analysis (GSEA) – NH versus LH

  12. 12.

    Supplementary Table 25

    Single nucleotide variations identified by mRNA seq of NALM-16

  13. 13.

    Supplementary Table 26

    Primer sequences used for targeted gene resequencing and NF1 deletion mapping

About this article

Publication history






Further reading