Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene

Abstract

The transition to flowering is a major determinant of plant architecture, and variation in the timing of flowering can have profound effects on inflorescence architecture, flower production and yield. Here, we show that the tomato mutant terminating flower (tmf) flowers early and converts the multiflowered inflorescence into a solitary flower as a result of precocious activation of a conserved floral specification complex encoded by ANANTHA (AN) and FALSIFLORA (FA). Without TMF, the coordinated flowering process is disrupted, causing floral identity genes, such as AN and members of the SEPALLATA (SEP) family, to activate precociously, while the expression of flowering transition genes, such as FRUITFULL (FUL), is delayed. Indeed, driving AN expression precociously is sufficient to cause early flowering, and this expression transforms multiflowered inflorescences into normal solitary flowers resembling those of the Solanaceae species petunia and tobacco. Thus, by timing AN activation, TMF synchronizes flower formation with the gradual reproductive transition, which, in turn, has a key role in determining simple versus complex inflorescences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The roles of TMF in shoot organization.
Figure 2: Cloning and expression dynamics of TMF.
Figure 3: Overexpression of TMF promotes vegetative characteristics and branching within tomato inflorescences.
Figure 4: Loss of TMF drives partial precocious activation of floral termination.
Figure 5: AN and FA are required for the tmf phenotype.
Figure 6: Altering the timing of AN transcriptional activation modulates inflorescence architecture.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Weberling, F. Morphology of Flowers and Inflorescences (Cambridge University Press, Cambridge, 1989).

  2. Kobayashi, Y. & Weigel, D. Move on up, it′s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371–2384 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Turck, F., Fornara, F. & Coupland, G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Bell, A.D. Plant Form: An Illustrated Guide to Flowering Plant Morphology (Oxford University Press, Oxford, 1993).

  5. Knapp, S., Bohs, L., Nee, M. & Spooner, D.M. Solanaceae—a model for linking genomics with biodiversity. Comp. Funct. Genomics 5, 285–291 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pnueli, L. et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125, 1979–1989 (1998).

    CAS  PubMed  Google Scholar 

  7. Lifschitz, E. & Eshed, Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J. Exp. Bot. 57, 3405–3414 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lippman, Z.B. et al. The making of a compound inflorescence in tomato and related nightshades. PLoS Biol. 6, e288 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Child, A. A review of branching patterns in the Solanaceae. in The Biology and Taxonomy of the Solanaceae (eds. Hawkes, J.G., Lester, R.N. & Skelding, A.D.) 345–356 (Academic Press, London, 1979).

  10. Danert, S. Die verzweigung der solanaceen in reproduktiven bereich. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin 6, 1–183 (1958).

    Google Scholar 

  11. Rickett, H.W. The classification of inflorescences. Bot. Rev. 10, 187–231 (1944).

    Article  Google Scholar 

  12. Park, S.J., Jiang, K., Schatz, M.C. & Lippman, Z.B. Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl. Acad. Sci. USA 109, 639–644 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Lukyanenko, A.N., Ochova, E.P. & Egeyan, M. A mutant with a single flower terminating the main stem. TGC Report 23, 24 (1973).

    Google Scholar 

  14. Lifschitz, E. et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103, 6398–6403 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poethig, R.S. Phase change and the regulation of developmental timing in plants. Science 301, 334–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Shalit, A. et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. USA 106, 8392–8397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng, X., Zhang, D., Cheng, Z., Keller, B. & Ling, H.-Q. Anew family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181, 1183–1193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J. & van der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Menda, N., Semel, Y., Peled, D., Eshed, Y. & Zamir, D. In silico screening of a saturated mutation library of tomato. Plant J. 38, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Henikoff, S., Till, B.J. & Comai, L. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630–636 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, L. et al. Overexpression of LSH1, a member of an uncharacterised gene family, causes enhanced light regulation of seedling development. Plant J. 37, 694–706 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida, A., Suzaki, T., Tanaka, W. & Hirano, H.Y. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc. Natl. Acad. Sci. USA 106, 20103–20108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takeda, S. et al. CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. Plant J. 66, 1066–1077 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Cho, E. & Zambryski, P.C. ORGAN BOUNDARY1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proc. Natl. Acad. Sci. USA 108, 2154–2159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. & Yanofsky, M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Uimari, A. et al. Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc. Natl. Acad. Sci. USA 101, 15817–15822 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Efroni, I., Blum, E., Goldshmidt, A. & Eshed, Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20, 2293–2306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hempel, F.D. et al. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853 (1997).

    CAS  PubMed  Google Scholar 

  29. Allen, K.D. & Sussex, I.M. Falsiflora and anantha control early stages of floral meristem development in tomato (Lycopersicon esculentum Mill.). Planta 200, 254–264 (1996).

    Article  Google Scholar 

  30. William, D.A. et al. Genomic identification of direct target genes of LEAFY. Proc. Natl. Acad. Sci. USA 101, 1775–1780 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parcy, F., Nilsson, O., Busch, M.A., Lee, I. & Weigel, D. A genetic framework for floral patterning. Nature 395, 561–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Chae, E., Tan, Q.K.-G., Hill, T.A. & Irish, V.F. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135, 1235–1245 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Souer, E. et al. Patterning of inflorescences and flowers by the F-box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20, 2033–2048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ikeda-Kawakatsu, K., Maekawa, M., Izawa, T., Itoh, J.-I. & Nagato, Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J. 69, 168–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Weigel, D. & Nilsson, O. A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 495–500 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Torti, S. et al. Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell 24, 444–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frijters, D. Principles of simulation of inflorescence development. Ann. Bot. 42, 549–560 (1978).

    Article  Google Scholar 

  38. Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D. & Coen, E. Evolution and development of inflorescence architectures. Science 316, 1452–1456 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Molinero-Rosales, N. et al. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J. 20, 685–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

  41. Liu, Y.-G. & Chen, Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43, 649–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. McCallum, C.M., Comai, L., Greene, E.A. & Henikoff, S. Targeted screening for induced mutations. Nat. Biotechnol. 18, 455–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Eshed, Y., Baum, S.F. & Bowman, J.L. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99, 199–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Curtis, M.D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Eck, J., Kirk, D. & Walmsley, A. Tomato (Lycopersicum esculentum). Methods Mol. Biol. 343, 459–473 (2006).

    PubMed  Google Scholar 

  46. Liang, D. et al. Establishment of a patterned GAL4-VP16 transactivation system for discovering gene function in rice. Plant J. 46, 1059–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ornitz, D.M., Moreadith, R.W. & Leder, P. Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc. Natl. Acad. Sci. USA 88, 698–702 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandez, A.I. et al. Flexible tools for gene expression and silencing in tomato. Plant Physiol. 151, 1729–1740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Néron, B. et al. Mobyle: a new full web bioinformatics framework. Bioinformatics 25, 3005–3011 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Blekhman, R., Marioni, J.C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R Development Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2011).

  55. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  56. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289–300 (1995).

    Google Scholar 

  57. Vojtek, A.B. & Hollenberg, S.M. RAS-RAF interaction: two-hybrid analysis. Methods Enzymol. 255, 331–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Bartel, P.L. et al. Using the two-hybrid system to detect protein-protein interactions. in Cellular Interactions in Development: A Practical Approach (ed. Hartley, D.A.) 153–179 (Oxford University Press, Oxford, 1993).

  59. Fromont-Racine, M., Rain, J.-C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat. Genet. 16, 277–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Formstecher, E. et al. Protein interaction mapping: a Drosophila case study. Genome Res. 15, 376–384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Aharoni for allowing screening of the population from which tmf2-D was derived. We also thank the Tomato Genetics Resource Center (TGRC) at the University of California, Davis, for germplasm, J. Van Eck for generating transgenic plants and DuPont Pioneer for funding. The work in the laboratory of A. Aharoni was supported by European Research Council (ERC) project SAMIT (Framework Programme 7). The tomato TILLING project is supported by funding from the European Union SOL Integrated Project FOOD-CT-2006-016214 to A.B. C.A.M. is a Gordon and Betty Moore Foundation Fellow of the Life Sciences Research Foundation. This research was supported by research grant 1294-10 from the Israel Science Foundation and Binational Agricultural Research & Development Fund IS-4249-09 to Y.E. and a Career Development Award from The International Human Frontier Science Program Organization to Z.B.L.

Author information

Authors and Affiliations

Authors

Contributions

C.A.M., S.J.P. and K.J. designed and performed experiments. F.M., A.B. and Y.I. contributed reagents. C.A.M., Y.E. and Z.B.L. designed the research and wrote the manuscript.

Corresponding author

Correspondence to Zachary B Lippman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–9 and Supplementary Table 4 (PDF 885 kb)

Supplementary Table 1

TMF interacting proteins (XLSX 12 kb)

Supplementary Table 2

Differentially expressed genes of tmf vs. WT (XLSX 86 kb)

Supplementary Table 3

Primer sequences (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacAlister, C., Park, S., Jiang, K. et al. Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat Genet 44, 1393–1398 (2012). https://doi.org/10.1038/ng.2465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing