Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exome sequencing identifies MVK mutations in disseminated superficial actinic porokeratosis

Abstract

Disseminated superficial actinic porokeratosis (DSAP) is an autosomal dominantly inherited epidermal keratinization disorder whose etiology remains unclear. We performed exome sequencing in one unaffected and two affected individuals from a DSAP family. The mevalonate kinase gene (MVK) emerged as the only candidate gene located in previously defined linkage regions after filtering against existing SNP databases, eight HapMap exomes and 1000 Genomes Project data and taking into consideration the functional implications of the mutations. Sanger sequencing in 57 individuals with familial DSAP and 25 individuals with sporadic DSAP identified MVK mutations in 33% and 16% of these individuals (cases), respectively. All 14 MVK mutations identified in our study were absent in 676 individuals without DSAP. Our functional studies in cultured primary keratinocytes suggest that MVK has a role in regulating calcium-induced keratinocyte differentiation and could protect keratinocytes from apoptosis induced by type A ultraviolet radiation. Our results should help advance the understanding of DSAP pathogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pedigree, clinical phenotype and mutation information of family 1, which was used for the exome sequencing analysis.
Figure 2: Genomic structure of human MVK and the predicted functional domains of the mevalonate kinase protein showing the 14 MVK mutations found to be associated with DSAP.
Figure 3: The affect of MVK expression on the proliferation, differentiation and apoptosis of keratinocytes.

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. 1

    Chernosky, M.E. Porokeratosis. Arch. Dermatol. 122, 869–870 (1986).

    CAS  Article  Google Scholar 

  2. 2

    Goerttler, E.A. & Jung, E.G. Porokeratosis Mibelli and skin carcinoma: a critical review. Humangenetik 26, 291–296 (1975).

    CAS  PubMed  Google Scholar 

  3. 3

    Sasson, M. & Krain, A.D. Porokeratosis and cutaneous malignancy. Dermatol. Surg. 22, 339–342 (1996).

    CAS  PubMed  Google Scholar 

  4. 4

    Otsuka, F., Someya, T. & Ishibashi, Y. Porokeratosis and malignant skin tumors. J. Cancer Res. Clin. Oncol. 117, 55–60 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Xia, J.H. et al. Identification of a locus for disseminated superficial actinic porokeratosis at chromosome 12q23.2–24.1. J. Invest. Dermatol. 114, 1071–1074 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Anderson, D.E. & Chernosky, M.E. Disseminated superficial actinic porokeratosis. Genetic aspects. Arch. Dermatol. 99, 408–412 (1969).

    CAS  Article  Google Scholar 

  7. 7

    Zhang, Z.H. et al. A mutation in SART3 gene in a Chinese pedigree with disseminated superficial actinic porokeratosis. Br. J. Dermatol. 152, 658–663 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Xia, K. et al. A novel locus (DSAP2) for disseminated superficial actinic porokeratosis maps to chromosome 15q25.1–26.1. Br. J. Dermatol. 147, 650–654 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Liu, P. et al. Identification of a genetic locus for autosomal dominant disseminated superficial actinic porokeratosis on chromosome 1p31.3–p31.1. Hum. Genet. 123, 507–513 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Luan, J. et al. A novel locus for disseminated superficial actinic porokeratosis maps to chromosome 16q24.1–24.3. Hum. Genet. 129, 329–334 (2011).

    Article  Google Scholar 

  11. 11

    Zhang, Z. et al. Fine mapping and identification of a candidate gene SSH1 in disseminated superficial actinic porokeratosis. Hum. Mutat. 24, 438 (2004).

    Article  Google Scholar 

  12. 12

    Frank, J., van Geel, M. & van Steensel, M.A. Loss of heterozygosity studies on chromosome 12q in disseminated superficial actinic porokeratosis: lessons to be learned. J. Invest. Dermatol. 127, 2058–2059 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Frank, J., van Steensel, M.A. & van Geel, M. Lack of SSH1 mutations in Dutch patients with disseminated superficial actinic porokeratosis: is there really an association? Hum. Mutat. 28, 1241–1242 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  Google Scholar 

  16. 16

    Cooper, G.M. et al. Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat. Methods 7, 250–251 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Wu, L.Q. et al. Confirmation and refinement of a genetic locus for disseminated superficial actinic porokeratosis (DSAP1) at 12q23.2–24.1. Br. J. Dermatol. 150, 999–1004 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Fu, Z., Wang, M., Potter, D., Miziorko, H.M. & Kim, J.J. The structure of a binary complex between a mammalian mevalonate kinase and ATP: insights into the reaction mechanism and human inherited disease. J. Biol. Chem. 277, 18134–18142 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Houten, S.M., Wanders, R.J. & Waterham, H.R. Biochemical and genetic aspects of mevalonate kinase and its deficiency. Biochim. Biophys. Acta 1529, 19–32 (2000).

    CAS  Article  Google Scholar 

  20. 20

    McTaggart, S.J. Isoprenylated proteins. Cell. Mol. Life Sci. 63, 255–267 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Bouwstra, J.A. & Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 1758, 2080–2095 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Zhao, Y., Gartner, U., Smith, F.J. & McLean, W.H. Statins downregulate K6a promoter activity: a possible therapeutic avenue for pachyonychia congenita. J. Invest. Dermatol. 131, 1045–1052 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Edmondson, S.R., Werther, G.A. & Wraight, C.J. Calcium regulates the expression of insulin-like growth factor binding protein-3 by the human keratinocyte cell line HaCaT. J. Invest. Dermatol. 116, 491–497 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Shen, C.S. et al. Premature apoptosis of keratinocytes and the dysregulation of keratinization in porokeratosis. Br. J. Dermatol. 147, 498–502 (2002).

    Article  Google Scholar 

  25. 25

    Haas, D. & Hoffmann, G.F. Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J. Rare Dis. 1, 13 (2006).

    Article  Google Scholar 

  26. 26

    Cuisset, L. et al. Molecular analysis of MVK mutations and enzymatic activity in hyper-IgD and periodic fever syndrome. Eur. J. Hum. Genet. 9, 260–266 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Mandey, S.H., Schneiders, M.S., Koster, J. & Waterham, H.R. Mutational spectrum and genotype-phenotype correlations in mevalonate kinase deficiency. Hum. Mutat. 27, 796–802 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Drenth, J.P., Haagsma, C.J. & van der Meer, J.W. Hyperimmunoglobulinemia D and periodic fever syndrome. The clinical spectrum in a series of 50 patients. International Hyper-IgD Study Group. Medicine (Baltimore) 73, 133–144 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Cuisset, L. et al. Molecular analysis of MVK mutations and enzymatic activity in hyper-IgD and periodic fever syndrome. Eur. J. Hum. Genet. 9, 260–266 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Bader-Meunier, B. et al. Mevalonate kinase deficiency: a survey of 50 patients. Pediatrics 128, e152–e159 (2011).

    Article  Google Scholar 

  31. 31

    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Li, R. et al. SNP detection for massively parallel whole-genome resequencing. Genome Res. 19, 1124–1132 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  35. 35

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the individuals and their families who participated in this project. This study was funded by Ministry of Education of China (IRT-1046).

Author information

Affiliations

Authors

Contributions

X.-J.Z., S.Y. and Jun Wang conceived of this study and obtained financial support. X.-J.Z., L.-D.S., Y.C., M.G. and X.F. participated in the design of the study and project management. S.-C.W., Z.-M.H., Z.-Y.W., Ping Li, B.-Y.W., W.W., X.-F.Y., J.-S.H., L.Z. and K.X. performed blood sample collection and selection. F.-S.Z., G.C., G.-Q.S., Y.X., J.-C.H. and T.-T.H. performed exome capture and paired-end sequencing. T.J., X.-B.Z., Y.-R.L., H.-M.Y. and Jian Wang performed next-generation sequencing analysis and filtering. X.Z., X.-F.T., W.-W.H., W.-J.W., Y.-J.Z., Jing Wang, F.-F.Q., B.L., J.Z., Z.-Y.Y., H.-F.Z., X.H., K.Y., Jie Wang and S.-X.Z. performed PCR and Sanger sequencing. X.-Y.Y., Y. Liu, B.-R.G., X.-D.Z., P.-G.W., H.L., S.-X.L., S.-K.S. and M.Z. performed other data analyses. S.-Q.Z., M.L., Y.-Q.R., H.C., Y. Li, H.-Y.T., Y.-T.D., J.-B.W., Y.-J.S., J.-P.G., Pan Li and F.-L.X. performed the cell culture and protein expression studies, gene sequencing, protein blot analysis and other function studies. M.L., X.Z., Y.-W.Z., J.-J.L. and W.-D.D. wrote and revised the manuscript. All the authors contributed to the final paper, with X.-J.Z., Jun Wang, S.-Q.Z., T.J., M.L., X.Z. and L.-D.S. having key roles.

Corresponding authors

Correspondence to Jun Wang or Xue-Jun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–5 and Supplementary Note. (PDF 1266 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, SQ., Jiang, T., Li, M. et al. Exome sequencing identifies MVK mutations in disseminated superficial actinic porokeratosis. Nat Genet 44, 1156–1160 (2012). https://doi.org/10.1038/ng.2409

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing