Abstract

Hair, skin and eye colors are highly heritable and visible traits in humans. We carried out a genome-wide association scan for variants associated with hair and eye pigmentation, skin sensitivity to sun and freckling among 2,986 Icelanders. We then tested the most closely associated SNPs from six regions—four not previously implicated in the normal variation of human pigmentation—and replicated their association in a second sample of 2,718 Icelanders and a sample of 1,214 Dutch. The SNPs from all six regions met the criteria for genome-wide significance. A variant in SLC24A4 is associated with eye and hair color, a variant near KITLG is associated with hair color, two coding variants in TYR are associated with eye color and freckles, and a variant on 6p25.3 is associated with freckles. The fifth region provided refinements to a previously reported association in OCA2, and the sixth encompasses previously described variants in MC1R.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

References

  1. 1.

    Hemispheric difference in human skin color. Am. J. Phys. Anthropol. 104, 449–457 (1997).

  2. 2.

    A golden age of human pigmentation genetics. Trends Genet. 22, 464–468 (2006).

  3. 3.

    & The evolution of human skin coloration. J. Hum. Evol. 39, 57–106 (2000).

  4. 4.

    , & Human pigmentation genetics: the difference is only skin deep. Bioessays 20, 712–721 (1998).

  5. 5.

    Family-likeness in eye-colour. Nature 34, 137 (1886).

  6. 6.

    et al. Replicated linkage for eye color on 15q using comparative ratings of sibling pairs. Behav. Genet. 36, 12–17 (2006).

  7. 7.

    What controls variation in human skin color? PLoS Biol. 1, E27 (2003).

  8. 8.

    & [Estimation of the heritability of hair and eye color.] Anthropol. Anz. 36, 109–120 (1978).

  9. 9.

    , , , & Genetics of risk factors for melanoma: an adult twin study of nevi and freckles. J. Natl. Cancer Inst. 92, 457–463 (2000).

  10. 10.

    & Major locus for red hair color linked to MNS blood groups on chromosome 4. Clin. Genet. 32, 125–128 (1987).

  11. 11.

    Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234 (2006).

  12. 12.

    , , , & Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11, 328–330 (1995).

  13. 13.

    The genetics of sun sensitivity in humans. Am. J. Hum. Genet. 75, 739–751 (2004).

  14. 14.

    & Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides 26, 1901–1908 (2005).

  15. 15.

    & Assignment of genes coding for brown eye colour (BEY2) and brown hair colour (HCL3) on chromosome 15q. Eur. J. Hum. Genet. 4, 237–241 (1996).

  16. 16.

    & Eye colour: portals into pigmentation genes and ancestry. Trends Genet. 20, 327–332 (2004).

  17. 17.

    et al. Sequences associated with human iris pigmentation. Genetics 165, 2071–2083 (2003).

  18. 18.

    et al. A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am. J. Hum. Genet. 80, 241–252 (2007).

  19. 19.

    et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005).

  20. 20.

    et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol. Biol. Evol. 24, 710–722 (2007).

  21. 21.

    et al. The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Hum. Genet. 116, 402–406 (2005).

  22. 22.

    et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum. Genet. 112, 387–399 (2003).

  23. 23.

    , , , & Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann. Hum. Genet. 71, 354–369 (2007).

  24. 24.

    , & The genetic architecture of normal variation in human pigmentation: an evolutionary perspective and model. Hum. Mol. Genet. 15, R176–R181 (2006).

  25. 25.

    , , , & Identifying genes underlying skin pigmentation differences among human populations. Hum. Genet. 120, 613–621 (2007).

  26. 26.

    et al. Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90 (2007).

  27. 27.

    & Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007).

  28. 28.

    International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  29. 29.

    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  30. 30.

    The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res. 16, 287–296 (2003).

  31. 31.

    , , & A missense mutation in the bovine MGF gene is associated with the roan phenotype in Belgian Blue and Shorthorn cattle. Mamm. Genome 10, 710–712 (1999).

  32. 32.

    , , , & A scan for signatures of positive selection in candidate loci for skin pigmentation in humans. Mol. Biol. Evol. 23, 1697–1706 (2006).

  33. 33.

    et al. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet. 66, 1351–1361 (2000).

  34. 34.

    , , & Protection of privacy by third-party encryption in genetic research in Iceland. Eur. J. Hum. Genet. 8, 739–742 (2000).

  35. 35.

    The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869–871 (1988).

  36. 36.

    et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007).

  37. 37.

    et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003).

  38. 38.

    & Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann. Hum. Genet. 51, 227–233 (1987).

  39. 39.

    & Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

  40. 40.

    et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

  41. 41.

    & Genomic control for association studies. Biometrics 55, 997–1004 (1999).

  42. 42.

    , & Genomic control to the extreme. Nat. Genet. 36, 1129–1130 (2004).

  43. 43.

    et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 34, e128 (2006).

  44. 44.

    et al. European population substructure: clustering of northern and southern populations. PLoS Genet. 2, e143 (2006).

  45. 45.

    et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

  46. 46.

    et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

  47. 47.

    & Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B 263, 1619–1626 (1996).

  48. 48.

    et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

  49. 49.

    et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 39, 218–225 (2007).

  50. 50.

    , , & A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

Download references

Acknowledgements

We thank the study participants from Iceland and Holland whose contributions made this work possible. We also thank the nurses at Noatun (deCODE's sample recruitment center) and the personnel at the deCODE core facilities for their hard work and enthusiasm. This work was funded in part by contract number 018827 (Polygene) from the 6th Framework Program of the European Union.

Author information

Affiliations

  1. deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland.

    • Patrick Sulem
    • , Daniel F Gudbjartsson
    • , Simon N Stacey
    • , Agnar Helgason
    • , Thorunn Rafnar
    • , Kristinn P Magnusson
    • , Andrei Manolescu
    • , Ari Karason
    • , Arnar Palsson
    • , Gudmar Thorleifsson
    • , Margret Jakobsdottir
    • , Stacy Steinberg
    • , Snæbjörn Pálsson
    • , Jeffrey Gulcher
    • , Augie Kong
    • , Unnur Thorsteinsdottir
    •  & Kari Stefansson
  2. Department of Ophthalmology, Landspitali–University Hospital, Reykjavik, Iceland.

    • Fridbert Jonasson
  3. Department of Dermatology, Landspitali–University Hospital, Reykjavik, Iceland.

    • Bardur Sigurgeirsson
    • , Kristin Thorisdottir
    •  & Jon H Olafsson
  4. Department of Plastic Surgery, Landspitali–University Hospital, Reykjavik, Iceland.

    • Kristin Thorisdottir
    •  & Rafn Ragnarsson
  5. Department of Anatomopathology, Landspitali–University Hospital, Reykjavik, Iceland.

    • Kristrun R Benediktsdottir
  6. Comprehensive Cancer Center East and Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.

    • Katja K Aben
  7. Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.

    • Lambertus A Kiemeney
  8. Department of Urology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.

    • Lambertus A Kiemeney

Authors

  1. Search for Patrick Sulem in:

  2. Search for Daniel F Gudbjartsson in:

  3. Search for Simon N Stacey in:

  4. Search for Agnar Helgason in:

  5. Search for Thorunn Rafnar in:

  6. Search for Kristinn P Magnusson in:

  7. Search for Andrei Manolescu in:

  8. Search for Ari Karason in:

  9. Search for Arnar Palsson in:

  10. Search for Gudmar Thorleifsson in:

  11. Search for Margret Jakobsdottir in:

  12. Search for Stacy Steinberg in:

  13. Search for Snæbjörn Pálsson in:

  14. Search for Fridbert Jonasson in:

  15. Search for Bardur Sigurgeirsson in:

  16. Search for Kristin Thorisdottir in:

  17. Search for Rafn Ragnarsson in:

  18. Search for Kristrun R Benediktsdottir in:

  19. Search for Katja K Aben in:

  20. Search for Lambertus A Kiemeney in:

  21. Search for Jon H Olafsson in:

  22. Search for Jeffrey Gulcher in:

  23. Search for Augie Kong in:

  24. Search for Unnur Thorsteinsdottir in:

  25. Search for Kari Stefansson in:

Contributions

P.S., D.F.G., A.H. and K.S. wrote the first draft of the paper. S.N.S., T.R., K.P.M., A.K., F.J., B.S., K.T., R.R., K.R.B. and J.H.O. collected the Icelandic samples and phenotypes. K.K.A. and L.A.K. collected the Dutch samples and phenotypes. S.N.S., T.R., M.J. and U.T. carried out the genotyping. P.S., D.F.G., A.H., A.M., A.P., G.T., S.S., S.P. and A.K. analyzed the data. P.S., D.F.G., S.N.S., A.H., F.J., L.A.K., J.H.O., J.G., U.T. and K.S. planned, supervised and coordinated the work. All authors contributed to the final version of the paper.

Competing interests

The employees of deCODE Genetics own stocks and stock options in the company.

Corresponding authors

Correspondence to Daniel F Gudbjartsson or Kari Stefansson.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Tables 1–9 and Supplementary Figures 1–6

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.2007.13

Further reading