Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary toggling of the MAPT 17q21.31 inversion region

This article has been updated

Abstract

Using comparative sequencing approaches, we investigated the evolutionary history of the European-enriched 17q21.31 MAPT inversion polymorphism. We present a detailed, BAC-based sequence assembly of the inverted human H2 haplotype and compare it to the sequence structure and genetic variation of the corresponding 1.5-Mb region for the noninverted H1 human haplotype and that of chimpanzee and orangutan. We found that inversion of the MAPT region is similarly polymorphic in other great ape species, and we present evidence that the inversions occurred independently in chimpanzees and humans. In humans, the inversion breakpoints correspond to core duplications with the LRRC37 gene family. Our analysis favors the H2 configuration and sequence haplotype as the likely great ape and human ancestral state, with inversion recurrences during primate evolution. We show that the H2 architecture has evolved more extensive sequence homology, perhaps explaining its tendency to undergo microdeletion associated with mental retardation in European populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative segmental duplication analysis of the 17q21.31 region.
Figure 2: Inversion polymorphism among primates.
Figure 3: Sequence comparison of the human H1, H2, chimpanzee and orangutan 17q21.31 region.
Figure 4: Phylogenetic and SNP haplotype analysis.
Figure 5: Evolutionary model of inversion toggling, segmental duplication formation and relationship with disease susceptibility.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 17 August 2008

    NOTE: In the version of this article initially published online, the left side of Figure 4c was mislabeled. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tuzun, E., Bailey, J.A. & Eichler, E.E. Recent segmental duplications in the working draft assembly of the brown Norway rat. Genome Res. 14, 493–506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chimpanzee Sequence and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  5. Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Gijselinck, I. et al. Visualization of MAPT inversion on stretched chromosomes of tau-negative frontotemporal dementia patients. Hum. Mutat. 27, 1057–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Cruts, M. et al. Genomic architecture of human 17q21 linked to frontotemporal dementia uncovers a highly homologous family of low-copy repeats in the tau region. Hum. Mol. Genet. 14, 1753–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Baker, M. et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum. Mol. Genet. 8, 711–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Pittman, A.M. et al. The structure of the tau haplotype in controls and in progressive supranuclear palsy. Hum. Mol. Genet. 13, 1267–1274 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Myers, A.J. et al. A survey of genetic human cortical gene expression. Nat. Genet. 39, 1494–1499 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Conrad, C. et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann. Neurol. 41, 277–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Rademakers, R. et al. High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum. Mol. Genet. 14, 3281–3292 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Sundar, P.D. et al. Two sites in the MAPT region confer genetic risk for Guam ALS/PDC and dementia. Hum. Mol. Genet. 16, 295–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Myers, A.J. et al. The H1c haplotype at the MAPT locus is associated with Alzheimer's disease. Hum. Mol. Genet. 14, 2399–2404 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sharp, A.J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat. Genet. 38, 1038–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Koolen, D.A. et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat. Genet. 38, 999–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Shaw-Smith, C. et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat. Genet. 38, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Evans, W. et al. The tau H2 haplotype is almost exclusively Caucasian in origin. Neurosci. Lett. 369, 183–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Hardy, J. et al. Evidence suggesting that Homo neanderthalensis contributed the H2 MAPT haplotype to Homo sapiens. Biochem. Soc. Trans. 33, 582–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Bailey, J.A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson, M.E. et al. Recurrent duplication-driven transposition of DNA during hominoid evolution. Proc. Natl. Acad. Sci. USA 103, 17626–17631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caceres, M., Sullivan, R.T. & Thomas, J.W. A recurrent inversion on the eutherian X chromosome. Proc. Natl. Acad. Sci. USA 104, 18571–18576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ebersberger, I. et al. Mapping human genetic ancestry. Mol. Biol. Evol. 24, 2266–2276 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Gagneux, P. The genus Pan: population genetics of an endangered outgroup. Trends Genet. 18, 327–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, N. et al. Low nucleotide diversity in chimpanzees and bonobos. Genetics 164, 1511–1518 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kehrer-Sawatzki, H., Sandig, C.A., Goidts, V. & Hameister, H. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenet. Genome Res. 108, 91–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg, N.A. et al. Genetic structure of human populations. Science 298, 2381–2385 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Jakobsson, M. et al. Genotype, haplotype, and copy number variation in worldwide human populations. Nature 451, 998–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Zody, M.C. et al. Analysis of the DNA sequence and duplication history of human chromosome 15. Nature 440, 671–675 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, Z. et al. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat. Genet. 39, 1361–1368 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Cardone, M.F. et al. Hominoid chromosomal rearrangements on 17q map to complex regions of segmental duplication. Genome Biol. 9, R28 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Casals, F. & Navarro, A. Chromosomal evolution: inversions: the chicken or the egg? Heredity 99, 479–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lupski, J.R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Osborne, L.R. et al. A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. Nat. Genet. 29, 321–325 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gimelli, G. et al. Genomic inversions of human chromosome 15q11-q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum. Mol. Genet. 12, 849–858 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Bailey, J.A., Yavor, A.M., Massa, H.F., Trask, B.J. & Eichler, E.E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parsons, J. Miropeats: graphical DNA sequence comparisons. Comput. Appl. Biosci. 11, 615–619 (1995).

    CAS  PubMed  Google Scholar 

  40. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  41. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Higgins, D.G. CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol. Biol. 25, 307–318 (1994).

    CAS  PubMed  Google Scholar 

  43. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    Article  CAS  PubMed  Google Scholar 

  44. International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  45. Goodman, M. The genomic record of Humankind's evolutionary roots. Am. J. Hum. Genet. 64, 31–39 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Marques, D. Reich, A. Navarro, N. Patterson, S. McCarroll, T. Brown and K. Augustyn for critical comments and valuable discussions in the preparation of this manuscript; C. Alkan for providing computational assistance; and members of the Broad Institute Sequence Platform (BISP) and Washington University Genome Sequencing Center (WUGSC) for generating clone-based sequencing data for this project. M.C.Z., A.A., W.C.W., L.W.H., T.A.G., R.K.W., A.D.R., J.W., J.G. and the BISP and WUGSC were supported by grants from the National Human Genome Research Institute. This work was supported in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health, Department of Health and Human Services, project number Z01 AG000957-05. This work was supported by NIH grants GM058815 and HG002385 to E.E.E. and a Rosetta Inpharmatics Fellowship (Merck Laboratories) to Z.J. E.E.E. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Z.J., M.C.Z. and E.E.E. analyzed and annotated sequence organization; J.M.K. did the haplotype analyses; F.A., M.F.C. and M.V. developed the FISH inversion assay and typed all primate metaphase chromosomes; L.C. and Z.C. did the segmental duplication analyses; M.C.Z., W.C.W., A.A., T.A.G., L.W.H., A.D.R., H.C.F., J.W., J.G. and J.D. generated, sequenced and analyzed the BAC clone assembly; R.K.W. oversaw sequence production; E.E.E., M.C.Z., Z.J., W.C.W., J.H. and J.M.K. drafted the manuscript; W.C.W., J.H. and E.E.E. designed the study; and E.E.E. finalized the manuscript.

Corresponding authors

Correspondence to Wesley C Warren or Evan E Eichler.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1 and 2, Supplementary Tables 1–5 (PDF 7487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zody, M., Jiang, Z., Fung, HC. et al. Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat Genet 40, 1076–1083 (2008). https://doi.org/10.1038/ng.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing