Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stochastic switching as a survival strategy in fluctuating environments


A classic problem in population and evolutionary biology is to understand how a population optimizes its fitness in fluctuating environments1,2,3,4. A population might enhance its fitness by allowing individual cells to stochastically transition among multiple phenotypes, thus ensuring that some cells are always prepared for an unforeseen environmental fluctuation. Here we experimentally explore how switching affects population growth by using the galactose utilization network of Saccharomyces cerevisiae. We engineered a strain that randomly transitions between two phenotypes as a result of stochastic gene expression5,6,7,8,9. Each phenotype was designed to confer a growth advantage over the other phenotype in a certain environment. When we compared the growth of two populations with different switching rates, we found that fast-switching populations outgrow slow switchers when the environment fluctuates rapidly, whereas slow-switching phenotypes outgrow fast switchers when the environment changes rarely. These results suggest that cells may tune inter-phenotype switching rates to the frequency of environmental changes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stochastic switching in changing environments.
Figure 2: Environmental effects on phenotypic distribution and growth rates.
Figure 3: Model predictions for fluctuating environments.
Figure 4: Testing the model predictions: growth dynamics in fluctuating environments with short and long periods.


  1. Cohen, D. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12, 119–129 (1966).

    Article  CAS  PubMed  Google Scholar 

  2. Levins, R. Evolution in Changing Environments: some Theoretical Explorations (Princeton University Press, Princeton, New Jersey, 1968).

    Google Scholar 

  3. Schaffer, W.M. Optimal efforts in fluctuating environments. Am. Nat. 108, 783–790 (1974).

    Article  Google Scholar 

  4. Stearns, S.C. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Kaern, M., Elston, T.C., Blake, W.J. & Collins, J.J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Samoilov, M.S., Price, G. & Arkin, A.P. From fluctuations to phenotypes: the physiology of noise. Sci. STKE 2006, re17 (2006).

    Article  PubMed  Google Scholar 

  8. Kaufmann, B.B. & van Oudenaarden, A. Stochastic gene expression: from single molecules to the proteome. Curr. Opin. Genet. Dev. 17, 107–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Maheshri, N. & O'Shea, E.K. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 413–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kussell, E., Kishony, R., Balaban, N.Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lachmann, M. & Jablonka, E. The inheritance of phenotypes: an adaptation to fluctuating environments. J. Theor. Biol. 181, 1–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523–530 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolf, D.M., Vazirani, V.V. & Arkin, A.P. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005).

    Article  PubMed  Google Scholar 

  15. Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Avery, S.V. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Casadesus, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasty, J., Pradines, J., Dolnik, M. & Collins, J.J. Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA 97, 2075–2080 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kepler, T.B. & Elston, T.C. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–3136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Atkinson, M.R., Savageau, M.A., Myers, J.T. & Ninfa, A.J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Isaacs, F.J., Hasty, J., Cantor, C.R. & Collins, J.J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA 100, 7714–7719 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature 435, 228–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Smits, W.K., Kuipers, O.P. & Veening, J.W. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4, 259–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Hawkins, K.M. & Smolke, C.D. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae. J. Biol. Chem. 281, 13485–13492 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Boeke, J.D., LaCroute, F. & Fink, G.R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Bryson, V. & Szybalski, W. Microbial selection. Science 115, 45–51 (1952).

    Article  Google Scholar 

  29. Blake, W.J. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Bishop, A.L., Rab, F.A., Sumner, E.R. & Avery, S.V. Phenotypic heterogeneity can enhance rare-cell survival in 'stress-sensitive' yeast populations. Mol. Microbiol. 63, 507–520 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references


We would like to thank M. Thattai, S. Tans, A. Raj, J. Gore, S. Rifkin and N. Karahan for helpful discussions and/or comments on the manuscript. This work was supported by National Science Foundation grant PHY-0548484 and US National Institutes of Health grant R01-GM077183. J.T.M. was partially supported by an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations



M.A. and A.v.O. conceived the project and designed the experiments. M.A. constructed and characterized the yeast strain used and performed the turbidostat experiments. J.T.M. built the turbidostat and developed the population dynamics model. All authors interpreted the results and wrote the paper.

Corresponding author

Correspondence to Alexander van Oudenaarden.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Methods (PDF 351 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Acar, M., Mettetal, J. & van Oudenaarden, A. Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40, 471–475 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing