Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

De novo Synthesis of Transfer and 55 RNA1f in Cleaving Sea Urchin Embryos

Abstract

SIGNIFICANT changes in RNA metabolism have been described during early sea urchin development. Until recently the only detectable class of RNA synthesized during cleavage stages was that with a low G + C base composition and heterogeneous sedimentation properties (DNA-Jike RNA)1. The genes for nucleolar ribosomal RNA (26S and 18S) were believed to become active only following gastrulation2–4, and the products of nuclear transfer RNA (4S) genes were first detected at the mesenchyme blastula stage5. Any label in the 4S region of sucrose gradients of RNA from the cleavage stages of embryogenesis was interpreted as reflecting the turnover of the pCpCpA region of pre-existing transfer RNA (tRNA) molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Wilt, F. H., Develop. Biol., 9, 299 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Guidice, G., & Mutolo, V., Biochim. Biophys. Acta, 138, 276 (1967).

    Article  Google Scholar 

  3. Nemer, M., Proc. US Nat. Acad. Sci., 50, 217 (1963).

    Article  Google Scholar 

  4. Nemer, M., & Infante, A. A., J. Mol. Biol., 27, 73 (1967).

    Article  CAS  PubMed  Google Scholar 

  5. Glisin, V. R., & Glisin, M. V., Proc. US Nat. Acad. Sci., 52, 1548 (1964).

    Article  CAS  Google Scholar 

  6. Kijima, S., & Wilt, F. H., J. Mol. Biol., 40, 235 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Emerson, C. P., & Humphreys, T., Develop. Biol., 23, 86 (1970).

    Article  CAS  PubMed  Google Scholar 

  8. Emerson, C. P., & Humphreys, T., Science, 171, 898 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. Attardi, G., & Amaidi, T., Ann. Rev. Biochem., 39, 183 (1970).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, D. D., & Dawid, I. B., Science, 160, 272 (1968).

    Article  CAS  PubMed  Google Scholar 

  11. Gross, P. R., Kraemer, K., & Malkin, L. I., Biochem. Biophys. Res. Commun., 18, 569 (1965).

    Article  CAS  PubMed  Google Scholar 

  12. Peacock, A. C., & Dingman, C. W., Biochemistry, 6, 1818 (1967).

    Article  CAS  PubMed  Google Scholar 

  13. Wilt, F. H., Anal. Biochem., 27, 186 (1969).

    Article  CAS  PubMed  Google Scholar 

  14. Wilt, F. H., Develop. Biol., 23, 444 (1970).

    Article  CAS  PubMed  Google Scholar 

  15. Razzell, W. E., & Khorana, H. G., J. Biol. Chem., 234, 2114 (1959).

    CAS  PubMed  Google Scholar 

  16. Muramatsu, M., & Fujisawa, T., Biochim. Biophys. Acta, 157, 476 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. Burdon, R. H., Martin, B. T., & Lal, B. M., J. Mol. Biol., 28, 357 (1967).

    Article  CAS  PubMed  Google Scholar 

  18. Starr, J. L., & Sells, B. H., Physiol. Rev., 49, 623 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Brownlee, G. G., Sanger, F., & Barrell, B. G., Nature, 215, 735 (1967).

    Article  CAS  PubMed  Google Scholar 

  20. Forget, B. G., & Weissman, S. M., Science, 158, 1695 (1967).

    Article  CAS  PubMed  Google Scholar 

  21. Comb, D. G., Katz, S., Branda, R., & Pinzano, C., J. Mol. Biol., 14, 195 (1965).

    Article  CAS  PubMed  Google Scholar 

  22. Scarano, E., Iaccarino, M., Grippo, P., & Winckelmans, D., J. Mol. Biol., 14, 603 (1965).

    Article  CAS  PubMed  Google Scholar 

  23. Sharma, O. K., Loeb, L. A., & Borek, E., Biochim. Biophys. Acta, 240, 558 (1971).

    Article  CAS  PubMed  Google Scholar 

  24. O'Melia, A. F., & Villee, C. A., Exp. Cell Res., 72, 276 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Comb, D. G., & Katz, S., J. Mol. Biol., 8, 790 (1964).

    Article  CAS  PubMed  Google Scholar 

  26. Loening, U. E., Biochem. J., 102, 251 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katz, S., & Comb, D. G., J. Biol. Chem., 238, 3065 (1963).

    CAS  PubMed  Google Scholar 

  28. Holt, C. E., Joel, P. B., & Herbert, E., J. Biol. Chem., 241, 1819 (1966).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'MELIA, A., VILLEE, C. De novo Synthesis of Transfer and 55 RNA1f in Cleaving Sea Urchin Embryos. Nature New Biology 239, 51–53 (1972). https://doi.org/10.1038/newbio239051a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/newbio239051a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing