Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Imide Products from Photo-oxidation of Bilirubin and Mesobilirubin

Abstract

IN 1958 Cremer et al.1 observed that the concentration of bilirubin (la) in the plasma could be reduced by exposing newborn infants to fluorescent light. Since that time phototherapy has come into wide use to lower elevated bilirubin levels associated with neonatal jaundice (hyperbilirubin-aemia)2, 3. This condition in the newborn has been associated with retarded motor development, irreversible brain damage or even death. Phototherapy lowers bilirubin levels (by conversion of this lipid-soluble pigment to water-soluble products)4 and therefore presumably helps to prevent brain damage. But there are two possible dangers in this treatment: light may have other deleterious effects on the newborn and the photo-products of bilirubin may themselves be toxic. At present neither the structures of the bilirubin photo-products nor their toxicities have been established. Although the photo-destruction of bilirubin has been studied in vivo and in vitro by Ostrow5–7, Schmid4, 7, and others8, 9, these authors investigated principally the visible-ultraviolet spectral changes during the course of bilirubin photo-oxidation and recorded paper chromatographic separations of the photo-products for comparison with the bile or urine of the congenitally jaundiced Gunn rat. More recently McDonagh has shown that singlet oxygen is involved in the self-sensitized photo-oxidation of bilirubin10. In view of the paucity of structural.information on the bilirubin photo-products, we wish to report preliminary findings on the in vitro photo-oxidation products from bilirubin IXa (1a), mesobilirubin IXa (1b) and 5′-oxo-3′,4,4′-triethyl-3,5-dimethyl-l′,5′-dihydro-(2.2′)-dipyrrylmethene (2). We synthesized and carried out our initial studies on 2, which serves as a simplified model for rings I and II of 1a and 1b because it lacks the vinyl group of 1a and the propionic acid β-substituent of 1a and 1b. The visible-ultraviolet spectrum of 2 is quite similar to that of either 1a or 1b11–13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Cremer, R. J., Perryman, P. W., and Richards, D. H., Lancet, i, 1094 (1958).

  2. Schmid, R., New Engl. J.Med., 285, 520 (1971). (Also see leading articles in J. Pediatrics, 74, 989 (1969); Brit. Med. J., 2, 5 (1970). and Lancet, i, 825 (1970).

    Article  CAS  Google Scholar 

  3. Bergsma, D., Hsia, D. Y.-Y., and Jackson, C. (eds.), Bilirubin Metabolism of the Newborn (Williams and Wilkins, Baltimore, 1970).

    Google Scholar 

  4. Callahan, E. W., jun., Thaler, M. M., Karon, M., Bauer, K., and Schmid, R., Pediatrics, 46, 841 (1970).

    PubMed  Google Scholar 

  5. Ostrow, J. D., and Branham, R. V., Gastroenterology, 58, 15 (1970).

    CAS  PubMed  Google Scholar 

  6. Ostrow, J. D., J. Clin. Invest., 50, 707 (1971).

    Article  CAS  Google Scholar 

  7. Ostrow, J. D., Hammaker, L., and Schmid, R., J. Clin. Invest., 40, 1442 (1961).

    Article  CAS  Google Scholar 

  8. Glauser, S. C., Lombard, S. A., Glauser, E. M., and Sisson, T. R. C., Proc. Soc. Exp. Biol. Med., 136, 518 (1971).

    Article  CAS  Google Scholar 

  9. Davies, R. E., and Keohane, S. J., Boll. Chim. Farm., 109, 589 (1970).

    CAS  PubMed  Google Scholar 

  10. McDonagh, A. F., Biochem. Biophys. Res. Commun., 44, 1306 (1971).

    Article  CAS  Google Scholar 

  11. With, T. K., Bile Pigments (Academic Press, New York, 1968).

    Google Scholar 

  12. Lemberg, R., and Legge, J. W., Haematin Compounds and Bile Pigments (Wiley, New York, 1949).

    Google Scholar 

  13. Nichol, W., and Morell, D. B., Biochim. Biophys. Acta, 177, 599 (1969).

    Article  CAS  Google Scholar 

  14. Fischer, H., and Orth, H., Die Chemie des Pyrrols, Band I, 157 (Akademische Verlagsgesellschaft M.B.H., Leipzig, 1934).

    Google Scholar 

  15. Whitlock, H. W., and Hanauer, R., J. Org. Chem., 33, 2169 (1969).

    Article  Google Scholar 

  16. Fischer, H., and Orth, H., Die Chemie des Pyrrols, 398 (Akademische Verlagsgesellschaft M.B.H., Leipzig, 1934).

    Google Scholar 

  17. Foote, C. S., and Lin, J. W.-P., Tetrahedron Lett., 3267 (1968).

  18. Inhoffen, H. H., Brockmann, H., jun., and Bliesener, K.-M., Justus Liebigs Ann. Chem., 730, 173 (1969).

    Article  CAS  Google Scholar 

  19. Fischer, H., Plieninger, H., and Weissbarth, O., Hoppe-Sey1er's Z. Physiol. Chem., 268, 197 (1941).

    Article  CAS  Google Scholar 

  20. McDonagh, A. F., and Assisi, F., Fed. Europ. Biochem. Soc. Lett., 18, 315 (1971).

    Article  CAS  Google Scholar 

  21. Bonnett, R., and McDonagh, A. F., Chem. Ind., 107 (1969).

  22. Webb, J. L., Enzyme and Metabolie Inhibitors, 3, chapter 3 (Academic Press, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LIGHTNER, D., QUISTAD, G. Imide Products from Photo-oxidation of Bilirubin and Mesobilirubin. Nature New Biology 236, 203–205 (1972). https://doi.org/10.1038/newbio236203a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/newbio236203a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing