Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas

Abstract

The study of neural stem cell and progenitor cell biology has improved our understanding of the biology of brain tumors in a developmental context. Recent work has demonstrated that brain tumors may harbor small subpopulations of cells that share characteristics of neural stem cells. There is still an ongoing debate about the specific role of these stem-like cells in cancer initiation, development and progression. Nonetheless, the concept of cancer stem cells has offered a new paradigm to understand tumor biology and resistance to current treatment modalities. Molecular aberrations in these cancer stem cells might be crucial targets for therapeutic intervention, with the hope of achieving more durable clinical responses. Recent studies have demonstrated that endogenous and transplanted neural stem cells and progenitor cells show a marked tropism to brain tumors. Although the mechanisms that govern these processes are poorly understood, the use of neural stem cells and progenitor cells as delivery vehicles for molecules toxic to tumors offers a promising experimental treatment strategy. This Review summarizes recent advances in the basic understanding of neural stem cell and cancer stem cell biology and the progress towards translating these novel concepts into the clinic.

Key Points

  • Cancer stem cells can be found in malignant gliomas and could be responsible for tumor initiation, tumor progression and resistance to current treatment strategies

  • Understanding the behavior and signaling in normal neural stem cell and progenitor cells will provide essential clues about genetic or epigenetic alterations in cancer stem cells and will be essential to developing successful novel therapies

  • A better understanding of 'stem cell niches' in the adult brain will allow essential insights into tumor behavior and treatment resistance

  • The analysis of purified cancer stem and progenitor cell populations with the development of novel lineage markers are likely to have an important impact on tumor classification and the debate about the 'cell-of-origin' in gliomas

  • The use of transplanted or endogenous progenitor cell populations might offer a powerful tool for promising future therapies to target dispersed cancer cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage and differentiation in the central nervous system.
Figure 2: Neural stem cells (NSCs) in the adult mammalian brain (SVZ, hippocampus).
Figure 3: Glioblastomas are classified into two subgroups based on the predominance of certain genetic alterations.
Figure 4: Models of gliomagenesis.
Figure 5: Personalized translational neuro-oncology platform to discover and individualize treatments for brain tumor patients.

Similar content being viewed by others

References

  1. Clarke MF and Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124: 1111–1115

    Article  CAS  PubMed  Google Scholar 

  2. Lapidot T et al. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648

    Article  CAS  PubMed  Google Scholar 

  3. Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737

    Article  CAS  PubMed  Google Scholar 

  4. Reya T et al. (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111

    Article  CAS  PubMed  Google Scholar 

  5. Tan BT et al. (2006) The cancer stem cell hypothesis: a work in progress. Lab Invest 86: 1203–1207

    Article  CAS  PubMed  Google Scholar 

  6. Vescovi AL et al. (2006) Brain tumour stem cells. Nat Rev Cancer 6: 425–436

    Article  CAS  PubMed  Google Scholar 

  7. Jordan CT et al. (2006) Cancer stem cells. N Engl J Med 355: 1253–1261

    Article  CAS  PubMed  Google Scholar 

  8. Dietrich J et al. (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5: 22

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reynolds BA and Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710

    Article  CAS  PubMed  Google Scholar 

  10. Temple S and Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9: 135–141

    Article  CAS  PubMed  Google Scholar 

  11. Gage FH (2000) Mammalian neural stem cells. Science 287: 1433–1438

    Article  CAS  PubMed  Google Scholar 

  12. Mayer-Proschel M et al. (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19: 773–785

    Article  CAS  PubMed  Google Scholar 

  13. Rao MS et al. (1998) A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci USA 95: 3996–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dietrich J et al. (2002) Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia 40: 65–77

    Article  PubMed  Google Scholar 

  15. Palmer TD et al. (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425: 479–494

    Article  CAS  PubMed  Google Scholar 

  16. Shen Q et al. (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304: 1338–1340

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez-Buylla A and Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41: 683–686

    Article  CAS  PubMed  Google Scholar 

  18. Sanai N et al. (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427: 740–744

    Article  CAS  PubMed  Google Scholar 

  19. Quinones-Hinojosa A et al. (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494: 415–434

    Article  PubMed  Google Scholar 

  20. Eriksson PS et al. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4: 1313–1317

    Article  CAS  PubMed  Google Scholar 

  21. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11: 173–189

    Article  CAS  PubMed  Google Scholar 

  22. Lois C et al. (1996) Chain migration of neuronal precursors. Science 271: 978–981

    Article  CAS  PubMed  Google Scholar 

  23. Curtis MA et al. (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315: 1243–1249

    Article  CAS  PubMed  Google Scholar 

  24. Altman J and Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124: 319–335

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn HG et al. (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16: 2027–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hastings NB et al. (2002) Granule neurons generated during development extend divergent axon collaterals to hippocampal area CA3. J Comp Neurol 452: 324–333

    Article  PubMed  Google Scholar 

  27. Cameron HA and McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406–417

    Article  CAS  PubMed  Google Scholar 

  28. Nunes MC et al. (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9: 439–447

    Article  CAS  PubMed  Google Scholar 

  29. Marmur R et al. (1998) Isolation and developmental characterization of cerebral cortical multipotent progenitors. Dev Biol 204: 577–591

    Article  CAS  PubMed  Google Scholar 

  30. Arsenijevic Y et al. (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 170: 48–62

    Article  CAS  PubMed  Google Scholar 

  31. Coles BL et al. (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101: 15772–15777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Temple S (2001) The development of neural stem cells. Nature 414: 112–117

    Article  CAS  PubMed  Google Scholar 

  33. Hitoshi S et al. (2002) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129: 233–244

    CAS  PubMed  Google Scholar 

  34. Shen Q et al. (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9: 743–751

    Article  CAS  PubMed  Google Scholar 

  35. Goldman JE et al. (1997) Fate determination and migration of progenitors in the postnatal mammalian CNS. Dev Neurosci 19: 42–48

    Article  CAS  PubMed  Google Scholar 

  36. Marshall CA et al. (2003) Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 43: 52–61

    Article  PubMed  Google Scholar 

  37. Lie DC et al. (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44: 399–421

    Article  CAS  PubMed  Google Scholar 

  38. Imitola J et al. (2004) Stem cells: cross-talk and developmental programs. Philos Trans R Soc Lond B Biol Sci 359: 823–837

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singh SK et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    Article  CAS  PubMed  Google Scholar 

  40. Dietrich J and Kempermann G (2006) Role of endogenous neural stem cells in neurological disease and brain repair. Adv Exp Med Biol 557: 191–220

    Article  CAS  PubMed  Google Scholar 

  41. Gupta T and Sarin R (2002) Poor-prognosis high-grade gliomas: evolving an evidence-based standard of care. Lancet Oncol 3: 557–564

    Article  PubMed  Google Scholar 

  42. Maher EA et al. (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15: 1311–1333

    Article  CAS  PubMed  Google Scholar 

  43. Lacroix M et al. (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95: 190–198

    Article  CAS  PubMed  Google Scholar 

  44. Kleihues P et al. (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61: 215–225

    Article  PubMed  Google Scholar 

  45. Pardal R et al. (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3: 895–902

    Article  CAS  PubMed  Google Scholar 

  46. Jordan CT and Guzman ML (2004) Mechanisms controlling pathogenesis and survival of leukemic stem cells. Oncogene 23: 7178–7187

    Article  CAS  PubMed  Google Scholar 

  47. Wang JC and Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15: 494–501

    Article  CAS  PubMed  Google Scholar 

  48. van Rhenen A et al. (2005) High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 11: 6520–6527

    Article  CAS  PubMed  Google Scholar 

  49. Al-Hajj M et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Y and Rosen JM (2005) Stem/progenitor cells in mouse mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 10: 17–24

    Article  PubMed  Google Scholar 

  51. Shackleton M et al. (2006) Generation of a functional mammary gland from a single stem cell. Nature 439: 84–88

    Article  CAS  PubMed  Google Scholar 

  52. Matsui W et al. (2004) Characterization of clonogenic multiple myeloma cells. Blood 103: 2332–2336

    Article  CAS  PubMed  Google Scholar 

  53. Collins AT and Maitland NJ (2006) Prostate cancer stem cells. Eur J Cancer 42: 1213–1218

    Article  CAS  PubMed  Google Scholar 

  54. O'Brien CA et al. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110

    Article  CAS  PubMed  Google Scholar 

  55. Ricci-Vitiani L et al. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115

    Article  CAS  PubMed  Google Scholar 

  56. Ignatova TN et al. (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39: 193–206

    Article  PubMed  Google Scholar 

  57. Singh SK et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828

    CAS  PubMed  Google Scholar 

  58. Hemmati HD et al. (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100: 15178–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan X et al. (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23: 9392–9400

    Article  CAS  PubMed  Google Scholar 

  60. Galli R et al. (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64: 7011–7021

    Article  CAS  PubMed  Google Scholar 

  61. Bao S et al. (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66: 7843–7848

    Article  CAS  PubMed  Google Scholar 

  62. Beier D et al. (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010–4015

    Article  CAS  PubMed  Google Scholar 

  63. Bao S et al. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760

    Article  CAS  PubMed  Google Scholar 

  64. Dean M et al. (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284

    Article  CAS  PubMed  Google Scholar 

  65. Piccirillo SG et al. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765

    Article  CAS  PubMed  Google Scholar 

  66. Fan X et al. (2007) Glioma stem cells: evidence and limitation. Semin Cancer Biol 17: 214–218

    Article  CAS  PubMed  Google Scholar 

  67. Jellinger K (1978) Glioblastoma multiforme: morphology and biology. Acta Neurochir (Wien) 42: 5–32

    Article  CAS  Google Scholar 

  68. Kleihues P and Ohgaki H (2000) Phenotype vs genotype in the evolution of astrocytic brain tumors. Toxicol Pathol 28: 164–170

    Article  CAS  PubMed  Google Scholar 

  69. Noble M and Dietrich J (2002) Intersections between neurobiology and oncology: tumor origin, treatment and repair of treatment-associated damage. Trends Neurosci 25: 103–107

    Article  CAS  PubMed  Google Scholar 

  70. Ligon KL et al. (2007) Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53: 503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shiras A et al. (2007) Spontaneous transformation of human adult non-tumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25: 1478–1489

    Article  CAS  PubMed  Google Scholar 

  72. Kakita A and Goldman JE (1999) Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23: 461–472

    Article  CAS  PubMed  Google Scholar 

  73. Recht L et al. (2003) Neural stem cells and neuro-oncology: quo vadis? J Cell Biochem 88: 11–19

    Article  CAS  PubMed  Google Scholar 

  74. Sanai N et al. (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353: 811–822

    Article  CAS  PubMed  Google Scholar 

  75. Jackson EL et al. (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51: 187–199

    Article  CAS  PubMed  Google Scholar 

  76. Globus JH and Kuhlenbeck H (1944) Subependymal cell plate (matrix) and its relationship to brain tumors of ependymal type. J Neuropathol 3: 1–35

    Article  Google Scholar 

  77. Vick NA et al. (1977) The role of the subependymal plate in glial tumorigenesis. Acta Neuropathol (Berl) 40: 63–71

    Article  CAS  Google Scholar 

  78. Barnett SC et al. (1998) Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells transformed with c-myc and H-ras form high-grade glioma after stereotactic injection into the rat brain. Carcinogenesis 19: 1529–1537

    Article  CAS  PubMed  Google Scholar 

  79. Bachoo RM et al. (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1: 269–277

    Article  CAS  PubMed  Google Scholar 

  80. Uhrbom L et al. (2005) Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res 65: 2065–2069

    Article  CAS  PubMed  Google Scholar 

  81. Ligon KL et al. (2006) Development of NG2 neural progenitor cells requires Olig gene function. Proc Natl Acad Sci USA 103: 7853–7858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Noble M and Dietrich J (2004) The complex identity of brain tumors: emerging concerns regarding origin, diversity and plasticity. Trends Neurosci 27: 148–154

    Article  CAS  PubMed  Google Scholar 

  83. Cairncross JG et al. (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90: 1473–1479

    Article  CAS  PubMed  Google Scholar 

  84. Coyle DE (1995) Adaptation of C6 glioma cells to serum-free conditions leads to the expression of a mixed astrocyte-oligodendrocyte phenotype and increased production of neurite-promoting activity. J Neurosci Res 41: 374–385

    Article  CAS  PubMed  Google Scholar 

  85. Lee J et al. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403

    Article  CAS  PubMed  Google Scholar 

  86. Aboody KS et al. (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97: 12846–12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Benedetti S et al. (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6: 447–450

    Article  CAS  PubMed  Google Scholar 

  88. Ehtesham M et al. (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62: 5657–5663

    CAS  PubMed  Google Scholar 

  89. Brown AB et al. (2003) Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther 14: 1777–1785

    Article  CAS  PubMed  Google Scholar 

  90. Barresi V et al. (2003) Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther 10: 396–402

    Article  CAS  PubMed  Google Scholar 

  91. Ehtesham M et al. (2004) Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 6: 287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shah K et al. (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57: 34–41

    Article  CAS  PubMed  Google Scholar 

  93. Yuan X et al. (2006) Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 66: 2630–2638

    Article  CAS  PubMed  Google Scholar 

  94. Staflin K et al. (2004) Neural progenitor cell lines inhibit rat tumor growth in vivo. Cancer Res 64: 5347–5354

    Article  CAS  PubMed  Google Scholar 

  95. Duntsch C et al. (2005) Up-regulation of neuropoiesis generating glial progenitors that infiltrate rat intracranial glioma. J Neurooncol 71: 245–255

    Article  PubMed  Google Scholar 

  96. Glass R et al. (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25: 2637–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ziu M et al. (2006) Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol 79: 125–133

    Article  CAS  PubMed  Google Scholar 

  98. Schmidt NO et al. (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7: 623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Imitola J et al. (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101: 18117–18122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Noble M (2000) Can neural stem cells be used to track down and destroy migratory brain tumor cells while also providing a means of repairing tumor-associated damage? Proc Natl Acad Sci USA 97: 12393–12395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Noble M (2000) Can neural stem cells be used as therapeutic vehicles in the treatment of brain tumors? Nat Med 6: 369–370

    Article  CAS  PubMed  Google Scholar 

  102. Tang Y et al. (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14: 1247–1254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Leonard A Florence Family Research Fund (to SK), the Wilmot Cancer Foundation (to JD), and the National Institute of Health (NIH; RO1-NS44701 to JD). SK is the recipient of a Sontag Soundation Distinguished Scientist Award and an NIH K08 award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jörg Dietrich or Santosh Kesari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, J., Imitola, J. & Kesari, S. Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas. Nat Rev Clin Oncol 5, 393–404 (2008). https://doi.org/10.1038/ncponc1132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing