Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: methyl-binding domain proteins as potential therapeutic targets in cancer

Abstract

The methyl-CpG-binding domain (MBD) proteins 'read' and interpret the methylation moieties on DNA, and thus are critical mediators of many epigenetic processes. Currently, the MBD family comprises five members; MBD1, MBD2, MBD3, MBD4 and MeCP2. Although not a 'classical' MBD protein, Kaiso also mediates transcriptional repression by using zinc finger domains to bind its targets. Since DNA hypermethylation is a well-recognized mechanism underlying gene silencing events in both tumorigenesis and drug resistance, it is likely that the MBD proteins may be important modulators of tumorigenesis. We review the recent work addressing this possibility, and discuss several of the MBD proteins as potentially excellent novel therapeutic targets.

Key Points

  • Modulation of DNA methylation patterns and the proteins that interpret those patterns modifies the neoplastic process

  • Reduction in levels of DNMT1 reduces tumorigenesis in some tissues, but exacerbates it in other tissues

  • MBD2 deficiency has been shown to suppress intestinal neoplasia in animal models, with apparently little protumorigenic role in other tissues, so identifying it as a promising new therapeutic target

  • Kaiso deficiency has been shown to suppress intestinal neoplasia, identifying it as a promising therapeutic target

  • MBD4 deficiency has multiple effects upon tumorigenesis, but its primary consequence is an increase in mutation rates through failed DNA repair of spontaneous deamination events

  • Although implicated in the neoplastic process, the precise roles of MBD1, MBD3 and MeCP2 remain to be established

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of the major MBD family members
Figure 2: Simplified diagram showing the modes of action of DNMT1, MBD2, MBD3, Kaiso, MBD4 and MeCP2
Figure 3: The MBD proteins and neoplasia

Similar content being viewed by others

References

  1. Ballestar E and Wolffe AP (2001) Methyl-CpG-binding proteins: targeting specific gene repression. Eur J Biochem 268: 1–6

    Article  CAS  PubMed  Google Scholar 

  2. Svedruzic ZM and Reich NO (2004) The mechanism of target base attack in DNA cytosine carbon 5 methylation. Biochemistry 43: 11460–11473

    Article  CAS  PubMed  Google Scholar 

  3. Urnov FD and Wolffe AP (2001) Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 20: 2991–3006

    Article  CAS  PubMed  Google Scholar 

  4. Jones PA and Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428

    Article  CAS  PubMed  Google Scholar 

  5. Hendrich B and Tweedie S (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet 19: 269–277

    Article  CAS  PubMed  Google Scholar 

  6. Jones PA and Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293: 1068–1070

    Article  CAS  PubMed  Google Scholar 

  7. Strathdee G et al. (1999) A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18: 2335–2341

    Article  CAS  PubMed  Google Scholar 

  8. Plumb JA et al. (2000) Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 60: 6039–6044

    CAS  PubMed  Google Scholar 

  9. Eads CA et al. (2002) Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic mice. Cancer Res 62: 1296–1269

    CAS  PubMed  Google Scholar 

  10. Lin H et al. (2006) Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell Biol 26: 2976–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kantarjian HM and Issa JP (2005) Decitabine dosing schedules. Semin Hematol 42 (Suppl 2): S17–S22

    Article  CAS  PubMed  Google Scholar 

  12. Kantarjian H et al. (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106: 1794–1803

    Article  CAS  PubMed  Google Scholar 

  13. Li E et al. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926

    Article  CAS  PubMed  Google Scholar 

  14. Jackson-Grusby L et al. (2001) Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 27: 31–39

    Article  CAS  PubMed  Google Scholar 

  15. Kim M et al. (2004) Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells. Nucleic Acids Res 32: 5742–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaudet F et al. (2003) Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492

    Article  CAS  PubMed  Google Scholar 

  17. Yamada Y et al. (2005) Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 102: 13580–13585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meehan RR et al. (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58: 499–507

    Article  CAS  PubMed  Google Scholar 

  19. Lewis JD et al. (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914

    Article  CAS  PubMed  Google Scholar 

  20. Ng HH et al. (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23: 58–61

    Article  CAS  PubMed  Google Scholar 

  21. Cross SH et al. (1997) A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat Genet 16: 256–259

    Article  CAS  PubMed  Google Scholar 

  22. Feng Q et al. (2002) Identification and functional characterization of the p66/p68 components of the MeCP1 complex. Mol Cell Biol 22: 536–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng Q and Zhang Y (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15: 827–832

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hendrich B and Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18: 6538–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hendrich B et al. (1999) Genomic structure and chromosomal mapping of the murine and human Mbd1, Mbd2, Mbd3, and Mbd4 genes. Mamm Genome 10: 906–912

    Article  CAS  PubMed  Google Scholar 

  26. Prokhortchouk A et al. (2001) The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 15: 1613–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nan X et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389

    Article  CAS  PubMed  Google Scholar 

  28. Jones PL et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19: 187–191

    Article  CAS  PubMed  Google Scholar 

  29. Wade PA et al. (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23: 62–66

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y et al. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hendrich B et al. (1999) The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401: 301–304

    Article  CAS  PubMed  Google Scholar 

  32. Kondo E et al. (2005) The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16(INK4a) and hMLH1 genes. Mol Cell Biol 25: 4388–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fraga MF et al. (2003) The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 31: 1765–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saito M and Ishikawa F (2002) The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J Biol Chem 277: 35434–35439

    Article  CAS  PubMed  Google Scholar 

  35. Ballestar E et al. (2003) Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 22: 6335–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lopez-Serra L et al. (2006) A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG Islands of tumor suppressor genes in human cancer. Cancer Res 66: 8342–8346

    Article  CAS  PubMed  Google Scholar 

  37. Fujita N et al. (1999) Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 19: 6415–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Villa R et al. (2006) The methyl-CpG binding protein MBD1 is required for PML-RARα function. Proc Natl Acad Sci USA 103: 1400–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watanabe S et al. (2003) Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proc Natl Acad Sci USA 100: 12859–12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bader S et al. (2003) MBD1, MBD2 and CGBP genes at chromosome 18q21 are infrequently mutated in human colon and lung cancers. Oncogene 22: 3506–3510

    Article  CAS  PubMed  Google Scholar 

  41. Zhao X et al. (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 100: 6777–6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewis JD et al. (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914

    Article  CAS  PubMed  Google Scholar 

  43. Feng and Zhang (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15: 827–832

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng Q et al. (2002) Identification and functional characterization of the p66/p68 components of the MeCP1 complex. Mol Cell Biol 22: 536–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sekimata M et al. (2001) Involvement of a novel zinc finger protein, MIZF, in transcriptional repression by interacting with a methyl-CpG-binding protein, MBD2. J Biol Chem 276: 42632–42638

    Article  CAS  PubMed  Google Scholar 

  46. Hendrich B et al. (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15: 710–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sansom OJ et al. (2003) Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet 34: 145–147

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki H et al. (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–422

    Article  CAS  PubMed  Google Scholar 

  49. Magdinier F and Wolffe AP (2001) Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 98: 4990–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trinh BN et al. (2002) DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair. Mol Cell Biol 22: 2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sansom OJ et al. (2005) MBD2 deficiency does not accelerate p53 mediated lymphomagenesis. Oncogene 24: 2430–2432

    Article  CAS  PubMed  Google Scholar 

  52. Campbell PM et al. (2004) Methylated DNA-binding protein 2 antisense inhibitors suppress tumourigenesis of human cancer cell lines in vitro and in vivo. Carcinogenesis 25: 499–507

    Article  CAS  PubMed  Google Scholar 

  53. Ivanov MA et al. (2003) Enhanced antitumor activity of a combination of MBD2-antisense electrotransfer gene therapy and bleomycin electrochemotherapy. Gene Med 5: 893–899

    Article  CAS  Google Scholar 

  54. Zhang Y et al. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu Y et al. (2004) Genetic and epigenetic analyses of MBD3 in colon and lung cancer. Br J Cancer 90: 1972–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noh EJ et al. (2005) Methyl CpG-binding domain protein 3 mediates cancer-selective cytotoxicity by histone deacetylase inhibitors via differential transcriptional reprogramming in lung cancer cells. Cancer Res 65: 11400–11410

    Article  CAS  PubMed  Google Scholar 

  57. Jiang CL et al. (2002) MBD3L1 and MBD3L2, two new proteins homologous to the methyl-CpG-binding proteins MBD2 and MBD3: characterization of MBD3L1 as a testis-specific transcriptional repressor. Genomics 80: 621–629

    Article  CAS  PubMed  Google Scholar 

  58. Jin SG et al. (2005) MBD3L2 interacts with MBD3 and components of the NuRD complex and can oppose MBD2-MeCP1-mediated methylation silencing. J Biol Chem 280: 12700–12709

    Article  CAS  PubMed  Google Scholar 

  59. Prokhortchouk A (2006) Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol 26: 199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prokhortchouk A et al. (2001) The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 15: 1613–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Daniel JM and Reynolds AB (1999) The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 19: 3614–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ruzov A et al. (2004) Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development 131: 6185–6194

    Article  CAS  PubMed  Google Scholar 

  63. Kim SW et al. (2004) Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat Cell Biol 6: 1212–1220

    Article  CAS  PubMed  Google Scholar 

  64. van Roy FM and McCrea PD (2005) A role for Kaiso–p120ctn complexes in cancer? Nat Rev Cancer 5: 956–964

    Article  CAS  PubMed  Google Scholar 

  65. Daniel JM et al. (2002) The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG inucleotides. Nucleic Acids Res 30: 2911–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodova M et al. (2004) Regulation of the rapsyn promoter by kaiso and delta-catenin. Mol Cell Biol 24: 7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park JI et al. (2005) Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev Cell 8: 843–854

    Article  CAS  PubMed  Google Scholar 

  68. Filion GJ et al. (2006) A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 26: 169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geerdink N et al. (2002) MECP2 mutation in a boy with severe neonatal encephalopathy: clinical, neuropathological and molecular findings. Neuropediatrics 33: 33–36

    Article  CAS  PubMed  Google Scholar 

  70. Villard L et al. (2000) Two affected boys in a Rett syndrome family: clinical and molecular findings. Neurology 55: 1188–1193

    Article  CAS  PubMed  Google Scholar 

  71. Nan X et al. (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471–481

    Article  CAS  PubMed  Google Scholar 

  72. Nan X et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389

    Article  CAS  PubMed  Google Scholar 

  73. Klose RJ et al. (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19: 667–678

    Article  CAS  PubMed  Google Scholar 

  74. Bernard D et al. (2006) The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene 25: 1358–1366

    Article  CAS  PubMed  Google Scholar 

  75. Muller HM et al. (2003) MeCP2 and MBD2 expression in human neoplastic and non-neoplastic breast tissue and its association with oestrogen receptor status. Br J Cancer 89: 1934–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakagawachi T et al. (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22: 8835–8844

    Article  CAS  PubMed  Google Scholar 

  77. Bellacosa A (2001) Role of MED1 (MBD4) gene in DNA repair and human cancer. J Cell Physiol 187: 137–144

    Article  CAS  PubMed  Google Scholar 

  78. Kouidou S et al. (2006) Methylation and repeats in silent and nonsense mutations of p53. Mutat Res 599: 167–177

    Article  CAS  PubMed  Google Scholar 

  79. Millar CB et al. (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297: 403–405

    Article  CAS  PubMed  Google Scholar 

  80. Wong E et al. (2002) Mbd4 inactivation increases C-T transition mutations and promotes gastrointestinal tumor formation. Proc Natl Acad Sci USA 99: 14937–14942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fritzell JA et al. (1997) Role of DNA mismatch repair in the cytotoxicity of ionizing radiation. Cancer Res 57: 5143–5147

    CAS  PubMed  Google Scholar 

  82. Toft NJ et al. (1999) Msh2 status modulates both apoptosis and mutation frequency in the murine small intestine. Proc Natl Acad Sci USA 96: 3911–3915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meyers M et al. (2001) Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res 61: 5193–5201

    CAS  PubMed  Google Scholar 

  84. Sansom OJ et al. (2003) MBD4 deficiency reduces the apoptotic response to DNA damaging agents in the murine small intestine. Oncogene 22: 7130–7136

    Article  CAS  PubMed  Google Scholar 

  85. Cortellino S et al. (2003) The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proc Natl Acad Sci USA 100: 15071–15076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Parsons BL et al. (2003) MED1: a central molecule for maintenance of genome integrity and response to DNA damage. Proc Natl Acad Sci USA 100: 14601–14602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sansom OJ et al. (2004) MBD4 deficiency does not increase mutation or accelerate tumourigenesis in mice lacking MMR. Oncogene 23: 5693–5696

    Article  CAS  PubMed  Google Scholar 

  88. Screaton RA et al. (2003) Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. Proc Natl Acad Sci USA 100: 5211–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bader S et al. (1999) Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene 18: 8044–8047

    Article  CAS  PubMed  Google Scholar 

  90. Wade PA (2001) Methyl CpG-binding proteins and transcriptional repression. Bioessays 23: 1131–1137

    Article  CAS  PubMed  Google Scholar 

  91. Le Guezennec X et al. (2006) MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 26: 843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R Clarke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansom, O., Maddison, K. & Clarke, A. Mechanisms of Disease: methyl-binding domain proteins as potential therapeutic targets in cancer. Nat Rev Clin Oncol 4, 305–315 (2007). https://doi.org/10.1038/ncponc0812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing