Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical significance of disseminated tumor cells in breast cancer

Abstract

The presence of tumor cells in the bone marrow of primary breast cancer patients at surgery has been shown to be an independent prognostic indicator of relapse. Tumor cells have been detected either directly, using immunocytochemical staining, or indirectly, using reverse transcription–polymerase chain reaction (RT-PCR). Studies have been initiated to determine whether the presence of disseminated cells can be monitored during the therapy of patients with primary breast cancer, and thus potentially be used to predict relapse before overt metastases are detectable. Studies are also ongoing to improve methods of detection, such as immunobead enrichment followed by staining and real-time RT-PCR, and to find alternative markers for the disseminated cells. Studies of patients with overt metastases have shown that there is a large tumor load in the peripheral blood and that this predicts overall survival. This article reviews the published literature on studies carried out in both primary and metastatic breast cancer patients, the methodologies and markers used, and improvements in detection methodologies that are being investigated including real-time RT-PCR, novel markers, enrichment and automated image analysis.

Key Points

  • On the basis of the pooled analysis of 4,703 patients, it is evident that the presence of micrometastases at surgery is an independent prognostic indicator of relapse in primary breast cancer

  • Cytokeratins are to date the best markers for detecting micrometastases by immunocytochemistry

  • RT-PCR has been demonstrated to be superior to immunocytochemistry in terms of sensitivity, but more-specific markers are required before this method can replace immunocytochemistry as the standard methodology

  • Standardized methodologies are required for detecting and monitoring micrometastases before they can be used as a basis for therapeutic change

  • Monitoring micrometastases in primary breast cancer patients currently requires the analysis of bone marrow aspirates, but new techniques/methodologies will potentially result in the use of peripheral blood, and will consequently lead to this being adopted as standard practice in breast cancer management

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disseminated tumor cells stained with A45B/B3 antibody for pan-cytokeratin detected using alkaline phosphatase, showing a cluster of disseminated tumor cells against a background of lymphocytes counterstained with hematoxylin and eosin.

Similar content being viewed by others

References

  1. Dixon JM (1992) Management of breast cancer. BMJ 305: 114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blanks RG et al. (2000) Effect of NHS breast screening programme on mortality from breast cancer in England and Wales, 1990–8: comparison of observed with predicted mortality. BMJ 321: 665–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fisher B et al. (1996) Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J Natl Cancer Inst 88: 1529–1542

    Article  CAS  PubMed  Google Scholar 

  4. Redding WH (1983) Detection of micrometastases in patients with primary breast cancer. Lancet 2: 1271–1274

    Article  CAS  PubMed  Google Scholar 

  5. Mansi JL et al. (1999) Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 354: 197–202

    Article  CAS  PubMed  Google Scholar 

  6. Diel IJ et al. (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88: 1652–1658

    Article  CAS  PubMed  Google Scholar 

  7. Braun S et al. (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342: 525–533

    Article  CAS  PubMed  Google Scholar 

  8. Cote RJ et al. (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9: 1749–1756

    Article  CAS  PubMed  Google Scholar 

  9. Porro G et al. (1988) Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients. Cancer 61: 2407–2411

    Article  CAS  PubMed  Google Scholar 

  10. Slade MJ et al. (2005) Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years. Int J Cancer 114: 94–100

    Article  CAS  PubMed  Google Scholar 

  11. Schoenfeld A et al. (1997) The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer 33: 854–861

    Article  CAS  PubMed  Google Scholar 

  12. Smith BM et al. (2000) Response of circulating tumor cells to systemic therapy in patients with metastatic breast cancer: comparison of quantitative polymerase chain reaction and immunocytochemical techniques. J Clin Oncol 18: 1432–1439

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt-Kittler O et al. (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100: 7737–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pantel K et al. (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85: 1419–1424

    Article  CAS  PubMed  Google Scholar 

  15. Cote RJ et al. (1999) Role of immunohistochemical detection of lymph-node metastases in management of breast cancer. International Breast Cancer Study Group. Lancet 354: 896–900

    Article  CAS  PubMed  Google Scholar 

  16. Gerber B et al. (2001) Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 19: 960–971

    Article  CAS  PubMed  Google Scholar 

  17. Hainsworth PJ et al. (1993) Detection and significance of occult metastases in node-negative breast cancer. Br J Surg 80: 459–463

    Article  CAS  PubMed  Google Scholar 

  18. [No authors listed] (1990) Prognostic importance of occult axillary lymph node micrometastases from breast cancers. Lancet 335: 1565–1568

  19. de Mascarel I et al. (1992) Prognostic significance of breast cancer axillary lymph node micrometastases assessed by two special techniques: reevaluation with longer follow-up. Br J Cancer 66: 523–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cote RJ et al. (1988) Monoclonal antibodies detect occult breast carcinoma metastases in the bone marrow of patients with early stage disease. Am J Surg Pathol 12: 333–340

    Article  CAS  PubMed  Google Scholar 

  21. Naume B et al. (2004) The prognostic value of isolated tumor cells in bone marrow in breast cancer patients: evaluation of morphological categories and the number of clinically significant cells. Clin Cancer Res 10: 3091–3097

    Article  PubMed  Google Scholar 

  22. Wiedswang G et al. (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21: 3469–3478

    Article  CAS  PubMed  Google Scholar 

  23. Cristofanilli M et al. (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351: 781–791

    Article  CAS  PubMed  Google Scholar 

  24. Braun S et al. (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353: 793–802

    Article  CAS  PubMed  Google Scholar 

  25. Wiedswang G et al. (2004) Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin Cancer Res 10: 5342–5348

    Article  PubMed  Google Scholar 

  26. Gangnus R et al. (2004) Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin Cancer Res 10: 3457–3464

    Article  CAS  PubMed  Google Scholar 

  27. Al-Hajj M et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sleeman KE et al. (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8: R7

    Article  CAS  PubMed  Google Scholar 

  29. Braun S et al. (1999) Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res 5: 3999–4004

    CAS  PubMed  Google Scholar 

  30. Stathopoulou A et al. (2003) Real-time quantification of CK-19 mRNA-positive cells in peripheral blood of breast cancer patients using the lightcycler system. Clin Cancer Res 9: 5145–5151

    CAS  PubMed  Google Scholar 

  31. Braun S et al. (2001) Comparative analysis of micrometastasis to the bone marrow and lymph nodes of node-negative breast cancer patients receiving no adjuvant therapy. J Clin Oncol 19: 1468–1475

    Article  CAS  PubMed  Google Scholar 

  32. Neville A (1991) Breast cancer micrometastases in lymph nodes and bone marrow are prognostically important. Ann Oncol 2: 13–14

    Article  CAS  PubMed  Google Scholar 

  33. Datta YH et al. (1994) Sensitive detection of occult breast cancer by the reverse- transcriptase polymerase chain reaction. J Clin Oncol 12: 475–482

    Article  CAS  PubMed  Google Scholar 

  34. Aihara T et al. (1997) Detection of pancreatic and gastric cancer cells in peripheral and portal blood by amplification of keratin 19 mRNA with reverse transcriptase-polymerase chain reaction. Int J Cancer 72: 408–411

    Article  CAS  PubMed  Google Scholar 

  35. Schoenfeld A et al. (1996) The detection of micrometastases in the lymph nodes, peripheral blood and bone marrow of patients with breast cancer using immunocytochemistry and polymerase chain reaction. In Breast Cancer: Advances in Biology and Therapeutics, 289–302 (Eds Calvo F et al.) Paris: John Libbey Eurotext

    Google Scholar 

  36. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27: 165–176

    Article  CAS  PubMed  Google Scholar 

  37. Body J (1992) Metastatic bone disease: clinical and therapeutic aspects. Bone 13 (Suppl 1): S57–S62

    Article  PubMed  Google Scholar 

  38. Heyderman E et al. (1979) A new antigen on the epithelial membrane: its immunoperoxidase localisation in normal and neoplastic tissue. J Clin Pathol 32: 35–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delsol G et al. (1984) Human lymphoid cells express epithelial membrane antigen: implications for diagnosis of human neoplasms. Lancet 2: 1124–1129

    Article  CAS  PubMed  Google Scholar 

  40. Thor A et al. (1988) Comparison of monoclonal antibodies for the detection of occult breast carcinoma metastases in bone marrow. Breast Cancer Res Treat 11: 133–145

    Article  CAS  PubMed  Google Scholar 

  41. Bussolati G et al. (1986) The immunohistochemical detection of lymph node metastases from infiltrating lobular carcinoma of the breast. Br J Cancer 54: 631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Landys K et al. (1998) Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res Treat 49: 27–33

    Article  CAS  PubMed  Google Scholar 

  43. Funke I et al. (1996) Comparative analyses of bone marrow micrometastases in breast and gastric cancer. Int J Cancer 65: 755–761

    Article  CAS  PubMed  Google Scholar 

  44. Mathieu MC et al. (1990) Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis in breast cancer. Breast Cancer Res Treat 15: 21–26

    Article  CAS  PubMed  Google Scholar 

  45. Pantel K et al. (1994) Methodological analysis of immunocytochemical screening for disseminated epithelial tumor markers in bone marrow. J Hematother 3: 165–173

    Article  CAS  PubMed  Google Scholar 

  46. Osborne MP et al. (1991) Sensitivity of immunocytochemical detection of breast cancer cells in human bone marrow. Cancer Res 51: 2706–2709

    CAS  PubMed  Google Scholar 

  47. Klevesath MB et al. (2005) The value of immunohistochemistry in sentinel lymph node histopathology in breast cancer. Br J Cancer 92: 2201–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Braun S and Pantel K (2001) Clinical significance of occult metastatic cells in bone marrow of breast cancer patients. Oncologist 6: 125–132

    Article  CAS  PubMed  Google Scholar 

  49. Pantel K and Braun S (2001) Molecular determinants of occult metastatic tumor cells in bone marrow. Clin Breast Cancer 2: 222–228

    Article  CAS  PubMed  Google Scholar 

  50. Pierga JY et al. (2003) Clinical significance of proliferative potential of occult metastatic cells in bone marrow of patients with breast cancer. Br J Cancer 89: 539–545

    Article  PubMed  PubMed Central  Google Scholar 

  51. Solakoglu O et al. (2002) Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc Natl Acad Sci USA 99: 2246–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Borgen E et al. (1999) Standardisation of the immunocytochemical detection of cancer cells in BM and blood: establishment of objective criteria for the evaluation of immunostatined cells. The European ISHAGE Working Group for Standardization of Tumor Cell Detection. Cytotherapy 1: 377–388

    Article  CAS  PubMed  Google Scholar 

  53. Cross NC et al. (1993) Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 82: 1929–1936

    CAS  PubMed  Google Scholar 

  54. Ghossein RA and Rosai J (1996) Polymerase chain reaction in the detection of micrometastases and circulating tumor cells. Cancer 78: 10–16

    Article  CAS  PubMed  Google Scholar 

  55. Schoenfeld A et al. (1996) Keratin 19 mRNA measurement to detect micrometastases in lymph nodes in breast cancer patients. Br J Cancer 74: 1639–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gunn J et al. (1996) Detection of micrometastases in colorectal cancer patients by K19 and K20 by reverse transcriptase-polymerase chain reaction. Lab Invest 75: 611–616

    CAS  PubMed  Google Scholar 

  57. Novaes M et al. (1997) Reverse transcriptase-polymerase chain reaction analysis of cytokeratin 19 expression in the peripheral blood mononuclear cells of normal female blood donors. Mol Pathol 50: 209–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruud P et al. (1999) Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells. Int J Cancer 80: 119–125

    Article  CAS  PubMed  Google Scholar 

  59. Savtchenko ES et al. (1988) Inactivation of human keratin genes: the spectrum of mutations in the sequence of an acidic keratin pseudogene. Mol Biol Evol 5: 97–108

    CAS  PubMed  Google Scholar 

  60. Slade MJ et al. (1999) Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol 17: 870–879

    Article  CAS  PubMed  Google Scholar 

  61. Nissan A et al. (2006) Multimarker RT-PCR assay for the detection of minimal residual disease in sentinel lymph nodes of breast cancer patients. Br J Cancer 94: 681–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abdul-Rasool S et al. (2006) An evaluation of molecular markers for improved detection of breast cancer metastases in sentinel nodes. J Clin Pathol 59: 289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kufer P et al. (2002) Heterogeneous expression of MAGE-A genes in occult disseminated tumor cells: a novel multimarker reverse transcription-polymerase chain reaction for diagnosis of micrometastatic disease. Cancer Res 62: 251–261

    CAS  PubMed  Google Scholar 

  64. Ring AE et al. (2005) Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques. Br J Cancer 92: 906–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sesterhenn AM et al. (2005) Cytokeratins 6 and 16 are frequently expressed in head and neck squamous cell carcinoma cell lines and fresh biopsies. Anticancer Res 25: 2675–2680

    CAS  PubMed  Google Scholar 

  66. Saintigny P et al. (2005) Real-time RT-PCR detection of CK19, CK7 and MUC1 mRNA for diagnosis of lymph node micrometastases in non small cell lung carcinoma. Int J Cancer 115: 777–782

    Article  CAS  PubMed  Google Scholar 

  67. Garrel R et al. (2006) The diagnostic accuracy of reverse transcription-PCR quantification of cytokeratin mRNA in the detection of sentinel lymph node invasion in oral and oropharyngeal squamous cell carcinoma: a comparison with immunohistochemistry. Clin Cancer Res 12: 2498–2505

    Article  CAS  PubMed  Google Scholar 

  68. Altaras MM et al. (2002) Detection of tumor circulating cells by cytokeratin-20 in the blood of patients with granulosa cell tumors. Gynecol Oncol 86: 330–336

    Article  PubMed  Google Scholar 

  69. Aoki S et al. (2002) Detection of peritoneal micrometastases by reverse transcriptase-polymerase chain reaction targeting carcinoembryonic antigen and cytokeratin 20 in colon cancer patients. J Exp Clin Cancer Res 21: 555–562

    CAS  PubMed  Google Scholar 

  70. Okada Y et al. (2001) Genetic detection of lymph node micrometastases in patients with gastric carcinoma by multiple-marker reverse transcriptase-polymerase chain reaction assay. Cancer 92: 2056–2064

    Article  CAS  PubMed  Google Scholar 

  71. Miyake Y et al. (2001) Extensive micrometastases to lymph nodes as a marker for rapid recurrence of colorectal cancer: a study of lymphatic mapping. Clin Cancer Res 7: 1350–1357

    CAS  PubMed  Google Scholar 

  72. Yokoyama N et al. (2002) Immunohistochemically detected hepatic micrometastases predict a high risk of intrahepatic recurrence after resection of colorectal carcinoma liver metastases. Cancer 94: 1642–1647

    Article  PubMed  Google Scholar 

  73. Schoenfeld A et al. (1994) Detection of breast cancer micrometastases in axillary lymph nodes by using polymerase chain reaction. Cancer Res 54: 2986–2990

    CAS  PubMed  Google Scholar 

  74. Watson MA and Fleming TP (1996) Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res 56: 860–865

    CAS  PubMed  Google Scholar 

  75. Becker RM et al. (1998) Identification of mammaglobin B, a novel member of the uteroglobin gene family. Genomics 54: 70–78

    Article  CAS  PubMed  Google Scholar 

  76. Ni J et al. (2000) All human genes of the uteroglobin family are localized on chromosome 11q12.2 and form a dense cluster. Ann NY Acad Sci 923: 25–42

    Article  CAS  PubMed  Google Scholar 

  77. Colpitts TL et al. (2000) Mammaglobin complexes with BU101 in breast tissue. Ann NY Acad Sci 923: 312–315

    Article  CAS  PubMed  Google Scholar 

  78. Colpitts TL et al. (2001) Mammaglobin is found in breast tissue as a complex with BU101. Biochemistry 40: 11048–11059

    Article  CAS  PubMed  Google Scholar 

  79. Fleming TP and Watson MA (2000) Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann NY Acad Sci 923: 78–89

    Article  CAS  PubMed  Google Scholar 

  80. Fanger GR et al. (2002) Detection of mammaglobin in the sera of patients with breast cancer. Tumour Biol 23: 212–221

    Article  CAS  PubMed  Google Scholar 

  81. Zach O et al. (2002) Prognostic value of tumour cell detection in peripheral blood of breast cancer patients. Acta Med Austriaca 29 (Suppl 59): S32–S34

    Google Scholar 

  82. Lin YC et al. (2003) Lack of correlation between expression of human mammaglobin mRNA in peripheral blood and known prognostic factors for breast cancer patients. Cancer Sci 94: 99–102

    Article  CAS  PubMed  Google Scholar 

  83. Guan XF et al. (2003) Relationship between mammaglobin expression and estrogen receptor status in breast tumors. Endocrine 21: 245–250

    Article  CAS  PubMed  Google Scholar 

  84. Nunez-Villar MJ et al. (2003) Elevated mammaglobin (h-MAM) expression in breast cancer is associated with clinical and biological features defining a less aggressive tumour phenotype. Breast Cancer Res 5: R65–R70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Benoy IH et al. (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 94: 672–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. O'Brien N et al. (2002) Mammaglobin a: a promising marker for breast cancer. Clin Chem 48: 1362–1364

    CAS  PubMed  Google Scholar 

  87. Silva JM et al. (2001) Detection of epithelial messenger RNA in the plasma of breast cancer patients is associated with poor prognosis tumor characteristics. Clin Cancer Res 7: 2821–2825

    CAS  PubMed  Google Scholar 

  88. Aihara T et al. (2000) Mammaglobin B gene as a novel marker for lymph node micrometastasis in patients with abdominal cancers. Cancer Lett 150: 79–84

    Article  CAS  PubMed  Google Scholar 

  89. Gendler SJ et al. (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265: 15286–15293

    CAS  PubMed  Google Scholar 

  90. Leong CF et al. (2003) Epithelial membrane antigen (EMA) or MUC1 expression in monocytes and monoblasts. Pathology 35: 422–427

    Article  CAS  PubMed  Google Scholar 

  91. Schneider SS et al. (1995) A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. Proc Natl Acad Sci USA 92: 3147–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zou Z et al. (1994) Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263: 526–529

    Article  CAS  PubMed  Google Scholar 

  93. Luppi M et al. (1996) Sensitive detection of circulating breast cancer cells by reverse-transcriptase polymerase chain reaction of maspin gene. Ann Oncol 7: 619–624

    Article  CAS  PubMed  Google Scholar 

  94. Merrie AE et al. (1999) Analysis of potential markers for detection of submicroscopic lymph node metastases in breast cancer. Br J Cancer 80: 2019–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bostick PJ et al. (1998) Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J Clin Oncol 16: 2632–2640

    Article  CAS  PubMed  Google Scholar 

  96. Witzig TE et al. (2002) Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy. Clin Cancer Res 8: 1085–1091

    PubMed  Google Scholar 

  97. Passlick B et al. (2000) The 17-1A antigen is expressed on primary, metastatic and disseminated non-small cell lung carcinoma cells. Int J Cancer 87: 548–552

    Article  CAS  PubMed  Google Scholar 

  98. SMAL [http://www.dkfz.de/dismal]

  99. Fields KK et al. (1996) Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 14: 1868–1876

    Article  CAS  PubMed  Google Scholar 

  100. Vannucchi AM et al. (1998) Evaluation of breast tumour cell contamination in the bone marrow and leukapheresis collections by RT-PCR for cytokeratin-19 mRNA. Br J Haematol 103: 610–617

    Article  CAS  PubMed  Google Scholar 

  101. Singletary SE et al. (1991) Detection of micrometastatic tumor cells in bone marrow of breast carcinoma patients. J Surg Oncol 47: 32–36

    Article  CAS  PubMed  Google Scholar 

  102. Harbeck N et al. (1994) Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer 69: 566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Salvadori B et al. (1990) Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens of breast cancer patients. Eur J Cancer 26: 865–867

    Article  CAS  PubMed  Google Scholar 

  104. Berger U et al. (1988) The relationship between micrometastases in the bone marrow, histopathologic features of the primary tumor in breast cancer and prognosis. Am J Clin Pathol 90: 1–6

    Article  CAS  PubMed  Google Scholar 

  105. Noguchi S et al. (1994) The detection of breast carcinoma micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Cancer 74: 1595–1600

    Article  CAS  PubMed  Google Scholar 

  106. Zhong XY et al. (2000) Sensitive detection of micrometastases in bone marrow from patients with breast cancer using immunomagnetic isolation of tumor cells in combination with reverse transcriptase/polymerase chain reaction for cytokeratin-19. J Cancer Res Clin Oncol 126: 212–218

    Article  CAS  PubMed  Google Scholar 

  107. Berois N et al. (2000) Molecular detection of cancer cells in bone marrow and peripheral blood of patients with operable breast cancer: comparison of CK19, MUC1 and CEA using RT-PCR. Eur J Cancer 36: 717–723

    Article  CAS  PubMed  Google Scholar 

  108. de Cremoux P et al. (2000) Detection of MUC1-expressing mammary carcinoma cells in the peripheral blood of breast cancer patients by real-time polymerase chain reaction Clin Cancer Res 6: 3117–3122

    CAS  PubMed  Google Scholar 

  109. Kahn HJ et al. (2000) RT-PCR amplification of CK19 mRNA in the blood of breast cancer patients: correlation with established prognostic parameters. Breast Cancer Res Treat 60: 143–151

    Article  CAS  PubMed  Google Scholar 

  110. Fabisiewicz A et al. (2004) Detection of circulating breast cancer cells in peripheral blood by a two-marker reverse transcriptase-polymerase chain reaction assay. Acta Biochim Pol 51: 747–755

    CAS  PubMed  Google Scholar 

  111. Janku F et al. (2004) Mammaglobin A, a novel marker of minimal residual disease in early stages breast cancer. Neoplasma 51: 204–208

    CAS  PubMed  Google Scholar 

  112. Han JH et al. (2003) Mammaglobin expression in lymph nodes is an important marker of metastatic breast carcinoma. Arch Pathol Lab Med 127: 1330–1334

    CAS  PubMed  Google Scholar 

  113. Ooka M et al. (2001) Bone marrow micrometastases detected by RT-PCR for mammaglobin can be an alternative prognostic factor of breast cancer. Breast Cancer Res Treat 67: 169–175

    Article  CAS  PubMed  Google Scholar 

  114. Cerveira N et al. (2004) Highly sensitive detection of the MGB1 transcript (mammaglobin) in the peripheral blood of breast cancer patients. Int J Cancer 108: 592–595

    Article  CAS  PubMed  Google Scholar 

  115. Marchetti A et al. (2001) mRNA markers of breast cancer nodal metastases: comparison between mammaglobin and carcinoembryonic antigen in 248 patients. J Pathol 195: 186–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank The Breast Cancer Research Trust, Cancer Research (UK) and the European Union for funding this research. The authors would also like to thank Mr Gopichand Tripuraneni for his contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J Slade.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slade, M., Coombes, R. The clinical significance of disseminated tumor cells in breast cancer. Nat Rev Clin Oncol 4, 30–41 (2007). https://doi.org/10.1038/ncponc0685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing