Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies

Abstract

Proteasome inhibition represents a new anticancer approach, with the potential effect of arresting tumor growth, metastasis and angiogenesis through the activation of multiple mechanisms. Bortezomib is a biologically active agent, producing predictable, dose-related and reversible proteasome inhibition; it has shown antitumor activity in various malignancies and is the first proteasome inhibitor to be used in clinical practice. Several trials demonstrated that bortezomib is relatively well tolerated, causing manageable nonhematologic and hematologic toxicity. The drug was approved in 2003 by the FDA for the treatment of patients with multiple myeloma who had received at least two prior therapies and demonstrated disease progression on the last therapy; its application was expanded recently for second-line treatment. This article summarizes the principal clinical trials of bortezomib and discusses its efficacy in solid and hematologic tumors.

Key Points

  • Bortezomib positively regulates the expression of many proapoptotic proteins and downregulates the transcription of proteins that promote cell growth and survival

  • Bortezomib enhances the anticancer effects of radiation therapy, immunotherapy and novel agents

  • A phase III trial demonstrated the superior efficacy of bortezomib compared with dexamethasone in patients with relapsed multiple myeloma

  • Several clinical trials of patients with refractory multiple myeloma showed that bortezomib is relatively well tolerated with manageable side effects

  • Phase I and II trial data demonstrated partial response efficacy of bortezomib in various solid tumors; this drug shows promise as a new potential anticancer approach

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bortezomib targets not only malignant myeloma cells but also their microenvironment, including cytokine regulation, angiogenesis inhibition and alteration of the adherence of malignant myeloma cells to extracellular matrix proteins and bone marrow stromal cells.

Similar content being viewed by others

References

  1. Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 (Suppl 1): 3–9

    Article  CAS  PubMed  Google Scholar 

  2. Spataro V et al. (1998) The ubiquitin-proteasome pathway in cancer. Br J Cancer 77: 448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mani A and Gelmann EP (2005) The ubiquitinin-proteasome pathway and its role in cancer J Clin Oncol 23: 4776–4789

    Article  CAS  PubMed  Google Scholar 

  4. Fujita Y et al. (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4: 222–231

    Article  CAS  PubMed  Google Scholar 

  5. Ivan M et al. (2001) HIF-α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468

    Article  CAS  PubMed  Google Scholar 

  6. Jaakkola P et al. (2001) Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472

    Article  CAS  PubMed  Google Scholar 

  7. Karin M and Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18: 621–663

    Article  CAS  PubMed  Google Scholar 

  8. Burger AM and Seth AK (2004) The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 40: 2217–2229

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell BS (2003) The proteasome—an emerging therapeutic target in cancer. N Engl J Med 348: 2597–2598

    Article  PubMed  Google Scholar 

  10. Adams J (2003) Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 8: 307–314

    Article  CAS  PubMed  Google Scholar 

  11. LeBlanc R et al. (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62: 4996–5000

    CAS  PubMed  Google Scholar 

  12. Hideshima T et al. (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61: 3071–3076

    CAS  PubMed  Google Scholar 

  13. Orlowski RZ et al. (1998) Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res 58: 4342–4348

    CAS  PubMed  Google Scholar 

  14. Richardson PG et al. (2003) Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control 10: 361–369

    Article  PubMed  Google Scholar 

  15. Ma MH et al. (2001) Proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 9: 1136–1144

    Google Scholar 

  16. Kisselev AF and Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8: 739–758

    Article  CAS  PubMed  Google Scholar 

  17. Bogyo M et al. (1997) Proteasome inhibitors and antigen presentation. Biopolymers 43: 269–280

    Article  CAS  PubMed  Google Scholar 

  18. Meng L et al. (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc Natl Acad Sci USA 96: 10403–10408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fenteany G et al. (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–731

    Article  CAS  PubMed  Google Scholar 

  20. Adams J et al. (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59: 2615–2622

    CAS  PubMed  Google Scholar 

  21. Shah SA et al. (2001) 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 82: 110–122

    Article  CAS  PubMed  Google Scholar 

  22. Frankel A et al. (2001) Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 6: 3719–3728

    Google Scholar 

  23. Sunwoo JB et al. (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7: 1419–1428

    CAS  PubMed  Google Scholar 

  24. Yang Y et al. (2004) Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non small cell lung cancer cells via the JNK/c-jun/AP-1 signaling. Cancer Sci 95: 176–180

    Article  CAS  PubMed  Google Scholar 

  25. Williams SA and McConkey DJ (2003) The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res 63: 7338–7344

    CAS  PubMed  Google Scholar 

  26. Breitshopf K et al. (2000) Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem 275: 21648–21652

    Article  Google Scholar 

  27. Li B and Dou QB (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 97: 3850–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Podar K et al. (2004) Caveolin-1 is required for a vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 64: 7500–7506

    Article  CAS  PubMed  Google Scholar 

  29. Hideshima T et al. (2002) NF-kappaB as a therapeutic target in multiple myeloma. J Biol Chem 277: 16639–16647

    Article  CAS  PubMed  Google Scholar 

  30. Russo SM et al. (2001) Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-κB. Int J Radiat Oncol Biol Phys 50: 183–193

    Article  CAS  PubMed  Google Scholar 

  31. Hideshima T et al. (2003) Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 101: 1530–1534

    Article  CAS  PubMed  Google Scholar 

  32. Kostova Z and Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22: 2309–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boccadoro M et al. (2005) Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 5: 4–9

    Article  CAS  Google Scholar 

  34. Mitsiades N et al. (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99: 14374–14379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogawa M et al. (2000) Cytokines prevent dexamethasone-induced apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in a new multiple myeloma cell line. Cancer Res 60: 4262–4269

    CAS  PubMed  Google Scholar 

  36. Schwartz R and Davidson T (2004) Pharmacology, pharmacokinetics, and practical applications of bortezomib. Oncology (Williston Park) 18 (Suppl 11): 14–21

  37. Adams J (2002) Development of proteasome inhibitor PS-341. Oncologist 7: 9–16

    Article  CAS  PubMed  Google Scholar 

  38. Chauhan D et al. (2003) Blockade of Hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63: 6174–6177

    CAS  PubMed  Google Scholar 

  39. Weinstein JN et al. (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275: 343–349

    Article  CAS  PubMed  Google Scholar 

  40. Mitsiades N et al. (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101: 2377–2380

    Article  CAS  PubMed  Google Scholar 

  41. Fahy BN et al. (2003) Schedule-dependent molecular effects of the proteasome inhibitor bortezomib and gemcitabine in pancreatic cancer. J Surg Res 113: 88–95

    Article  CAS  PubMed  Google Scholar 

  42. Teicher BA et al. (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5: 2638–2645

    CAS  PubMed  Google Scholar 

  43. Pervan M et al. (2001) Molecular pathways that modify tumor radiation response. Am J Clin Oncol 24: 481–485

    Article  CAS  PubMed  Google Scholar 

  44. Tan C et al. (2002) Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukaemia. Cancer Res 62: 1083–1086

    CAS  PubMed  Google Scholar 

  45. Yu C et al. (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive to STI571. Blood 102: 3765–3774

    Article  CAS  PubMed  Google Scholar 

  46. Pei XY et al. (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10: 3839–3852

    Article  CAS  PubMed  Google Scholar 

  47. Akiyama M et al. (2003) Nuclear factor-κB p65 mediates tumor necrosis factor α-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 63: 18–21

    CAS  PubMed  Google Scholar 

  48. Drexler HC et al. (2000) Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 14: 65–77

    Article  CAS  PubMed  Google Scholar 

  49. Aghajanian C et al. (2002) A phase I trial of the novel proteasome inhibitor PS-341 in advanced solid tumor malignancies. Clin Cancer Res 8: 2505–2511

    CAS  PubMed  Google Scholar 

  50. Papandreou CN et al. (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observation in androgen-independent prostate cancer. J Clin Oncol 22: 2108–2121

    Article  CAS  PubMed  Google Scholar 

  51. Price N and Dreicer R (2004) Phase I/II trial of bortezomib plus docetaxel in patients with advanced androgen-independent prostate cancer. Clin Prostate Cancer 3: 141–143

    Article  PubMed  Google Scholar 

  52. Davis NB et al. (2004) Phase II trial of PS-341 in patients with renal cancer: a University of Chicago phase II consortium study. J Clin Oncol 22: 115–119

    Article  CAS  PubMed  Google Scholar 

  53. Kondagunta GV et al. (2004) Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol 22: 3720–3725

    Article  CAS  PubMed  Google Scholar 

  54. Shah MH et al. (2004) Phase II study of the proteasome inhibitor bortezomib (PS-341) in patients with metastatic neuroendocrine tumors. Clin Cancer Res 10: 6111–6118

    Article  CAS  PubMed  Google Scholar 

  55. Maki RG et al. (2005) A multicententer phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer 103: 1431–1438

    Article  CAS  PubMed  Google Scholar 

  56. Blaney SM et al. (2004) Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children's Oncology Group study (ADVL0015). J Clin Oncol 22: 4804–4809

    Article  CAS  PubMed  Google Scholar 

  57. Markovic SN et al. (2005) A phase II study of bortezomib in the treatment of metastatic malignant melanoma. Cancer 103: 2584–2589

    Article  CAS  PubMed  Google Scholar 

  58. Alberts SR et al. (2005) PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group (NCCTG) randomized phase II study. Ann Oncol 16: 1654–1661

    Article  CAS  PubMed  Google Scholar 

  59. Mackay H et al. (2005) A phase II trial with pharmacodynamic endpoints of the proteasome inhibitor bortezomib in patients with metastatic colorectal cancer. Clin Cancer Res 11: 5526–5533

    Article  CAS  PubMed  Google Scholar 

  60. Yang CH et al. (2006) Bortezomib (VELCADE®) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 17: 813–817

    Article  CAS  PubMed  Google Scholar 

  61. Aghajanian C et al. (2005) Phase I trial of Bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol 23: 5943–5949

    Article  CAS  PubMed  Google Scholar 

  62. Van Waes C et al. (2005) Inhibition of nuclear factor-κB and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 63: 1400–1412

    Article  CAS  PubMed  Google Scholar 

  63. Dy KG et al. (2005) A Phase I and pharmacologic trial of two schedules of the proteasome inhibitor, PS-341 (bortezomib, Velcade®), in patients with advanced cancer. Clin Cancer Res 11: 3410–3416

    Article  CAS  PubMed  Google Scholar 

  64. Hamilton AL et al. (2005) Proteasome inhibition with bortezomib (PS-341): a Phase I study with pharmacodynamic end points using a day 1 and day 4 schedule in a 14-day cycle. J Clin Oncol 23: 6107–6116

    Article  CAS  PubMed  Google Scholar 

  65. Orlowski RZ et al. (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20: 4420–4427

    Article  CAS  PubMed  Google Scholar 

  66. Richardson PG et al. (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 248: 2609–2617

    Article  Google Scholar 

  67. Jagannath S et al. (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127: 165–172

    Article  CAS  PubMed  Google Scholar 

  68. Anonymous (online 13 May 2003) FDA approves Velcade for multiple myeloma treatment. [http://www.fda.gov/bbs/topics/NEWS/2003/NEW00905.html] (accessed 30 May 2006)

  69. Richardson PG et al. (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352: 2487–2498

    Article  CAS  PubMed  Google Scholar 

  70. Orlowski RZ et al. (2005) Phase I trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 105: 3058–3065

    Article  CAS  PubMed  Google Scholar 

  71. Berenson J et al. (2006) Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 24: 937–944

    Article  CAS  PubMed  Google Scholar 

  72. Chanan-Khan A and Miller KC (2005) Velcade®, doxil and thalidomide (VDT) is an effective salvage regimen for patients with relapsed and refractory myeloma. Leuk Lymphoma 46: 1103–1104

    Article  CAS  PubMed  Google Scholar 

  73. Richardson P et al. (2005) A phase 1 trial of lenalidomide (REVLIMID®) with bortzomib (VELCADE®) in relapsed and refractory multiple myeloma [abstract]. Blood 106: a365

    Google Scholar 

  74. Chanan-Khan A et al. (2005) Phase 1 trial of KOS-953 + bortzomib (BZ) in relapsed refractory multiple myeloma [abstract]. Blood 106: a362

    Article  CAS  Google Scholar 

  75. Small GW et al. (2004) Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an anti-apoptotic role. Mol Pharmacol 66: 1478–1490

    Article  CAS  PubMed  Google Scholar 

  76. Voorhees PM et al. (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 9: 6316–6325

    CAS  PubMed  Google Scholar 

  77. Jagannath S et al. (2005) Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 129: 776–783

    Article  CAS  PubMed  Google Scholar 

  78. Harousseau J et al. (2005) Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: preliminary results of an IFM phase II study. ASCO annual meeting; May 13-17, 2005; Orlando, Florida [abstract #6653]

    Google Scholar 

  79. Richardson P et al. (2004) Phase II trial of single agent bortezomib in patients with previously untreated multiple myeloma [abstract]. Blood 104: a336

    Article  CAS  Google Scholar 

  80. Oakervee HE et al. (2005) PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 129: 755–762

    Article  CAS  PubMed  Google Scholar 

  81. Popat R et al. (2005) Reduced dose PAD combination therapy (PS-341/bortezomib, adriamycin and dexamethasone) for previously untreated patients with multiple myeloma [abstract]. Blood 106: a2554

    Google Scholar 

  82. Mateos MV et al. (2005) A phase I/II national, multi-center, open-label study of bortezomib plus melphalan and prednisone (V-MP) in elderly untreated multiple myeloma (MM) patients [abstract]. Blood 106: a786

    Google Scholar 

  83. Wang M et al. (2005) Rapid control of previously untreated multiple myeloma bortezomib-thalidomide-dexamethasone followed by early intensive therapy [abstract]. Blood 106: a784

    Google Scholar 

  84. Pham LV et al. (2003) Inhibition of constitutive NF-κB activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 171: 88–95

    Article  CAS  PubMed  Google Scholar 

  85. Bryant J et al. (2000) Development of intermediate-grade (mantle cell) and low grade (small lymphocytic and marginal zone) human non-Hodgkin's lymphomas xenotransplanted in severe combined immunodeficiency mouse models. Lab Invest 80: 557–573

    Article  CAS  PubMed  Google Scholar 

  86. O'Connor OA et al. (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma. J Clin Oncol 23: 676–684

    Article  CAS  PubMed  Google Scholar 

  87. Goy A et al. (2005) Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol 23: 667–675

    Article  CAS  PubMed  Google Scholar 

  88. Belch A et al. (2004) Phase II trial of bortezomib in mantle cell lymphoma [abstract]. Blood 104: a1835

    Google Scholar 

  89. Strauss JS et al. (2004) Phase II clinical study of bortezomib (VELCADE®) in patients (pts) with relapsed/refractory non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD) [abstract]. Blood 104: a1836

    Google Scholar 

  90. Goy A et al. (2005) Treatment with the proteasome inhibitor bortezomib in patients with relapsed or refractory mantle cell lymphoma: preliminary results of the PINNACLE study. 10th Congress of the European Hematology Association: 2005 June 2–5; Stockholm [abstract #0268]

    Google Scholar 

  91. Millennium Pharmaceuticals (2006) FDA Grants VELCADE® (bortezomib) for Injection Fast Track Status for Relapsed and Refractory Mantle Cell Lymphoma. [http://investor.millennium.com/phoenix.zhtml?c=80159&p=irol-newsmediaArticle&ID=639444&highlight=]

  92. National Comprehensive Cancer Network: clinical practice guidelines in oncology [http://www.nccn.org/professionals/physician_gls/f_guidelines.asp]

  93. Hernandez-Ilizaliturri FJ et al. (2003) PS341 inhibits cell proliferation, induces apoptosis and enhances the biological effects of rituximab on non-Hodgkin's lymphoma (NHL) cell lines and lymphoma xenografts [abstract]. Blood 102: a3359

    Google Scholar 

  94. De Vos S et al. (2005) Bortezomib plus rituximab in patients with indolent Non-Hodgkin's Lymphoma (NHL): a phase 2 study [abstract]. Blood 106: a17

    Google Scholar 

  95. Dimopoulos MA et al. (2005) Treatment of relapsed or refractory Waldenström's Macroglobulinemia with bortezomib. Haematologica 90: 1655–1658

    CAS  PubMed  Google Scholar 

  96. Treon S et al. (2005) Phase II study of bortezomib in Waldenstrom's Macroglobulinemia: results of WMCTG trial 03-248 [abstract]. Blood 106: a490

    Google Scholar 

  97. Bueso-Ramos CE et al. (2004) Expression of constitutively active nuclear-kappa B relA transcription factor in blasts of acute myeloid leukaemia. Human Pathol. 35: 246–253

    Article  CAS  Google Scholar 

  98. Sanz C et al. (2002) Nuclear factor κB is activated in myelodysplastic bone marrow cells. Haematologica 87: 1005–1006

    CAS  PubMed  Google Scholar 

  99. Cortes J et al. (2004) Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 10: 3371–3376

    Article  CAS  PubMed  Google Scholar 

  100. Attar EC et al. (2005) Addition of bortezomib (Velcade®) to AML induction chemotherapy is well tolerated and results in a high complete remission rate with acute myeloid leukemia [abstract]. Blood 106: a2782

    Article  Google Scholar 

  101. Bubis JA et al. (2005) Pilot study of low dose melphalan and bortezomib for treatment of acute myelogenous leukaemia and high risk myelodysplastic syndromes [abstract]. Blood 106: a4633

    Google Scholar 

  102. Lional S et al. (2005) Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 106: 3777–3784

    Article  CAS  Google Scholar 

  103. Ding Q and Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implication for heat shock proteins. J Neurochem 77: 1010–1017

    Article  CAS  PubMed  Google Scholar 

  104. Berenson JR et al. (2005) Safety of prolonged therapy with bortezomib in relapsed or refractory multiple myeloma. Cancer 104: 2141–2148

    Article  CAS  PubMed  Google Scholar 

  105. Chanan-Khan A et al. (2005) Safety and efficacy of bortezomib in multiple myeloma patients with renal failure requiring dialysis [abstract]. Blood 106: a2550

    Article  CAS  Google Scholar 

  106. Jagannath S et al. (2005) Bortezomib in recurrent and/or refractory multiple myeloma. Cancer 103: 195–200

    Article  CAS  Google Scholar 

  107. Lee AH et al. (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 100: 9946–9951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Paull KD et al. (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 19: 1088–1092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Caravita.

Ethics declarations

Competing interests

Bortezomib is a protease inhibitor and is the first compound in this drug class to be used in clinical practice, with clinical trials showing demonstrated efficacy in patients with relapsed/refractory multiple myeloma. Mature clinical data on the efficacy of bortezomib in solid tumors are not yet available, but early clinical data indicate this could be a promising drug for the treatment of advanced solid tumors. This Review summarizes the principal clinical trials of bortezomib and discusses its efficacy in solid and hematologic tumors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caravita, T., de Fabritiis, P., Palumbo, A. et al. Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies. Nat Rev Clin Oncol 3, 374–387 (2006). https://doi.org/10.1038/ncponc0555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing